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Outline

 understanding single decisions of nonlinear learners
 Layer-wise Relevance Propagation (LRP)

 Applications in Neuroscience, Medicine and Physics




Towards Explaining:
Machine Learning = black box?



Explaining single Predictions Pixel-wise
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Goodbye Blackbox ML!

Relevance Propagation
(Bach et al. 2015)
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Historical remarks on Explaining Predictors

Gradients Sensitivity Gradient vs. Decomposition
(Baehrens et al. 2010) (Montavon et al., 2018)
Sensitivity -
(Morch et al., 1995) Sensitivity
(Simonyan et al. 2014)

Gradient times input DeepLIFT Grad-CAM Integrated Gradient
(Shrikumar et al., 2016) (Shrikumar et al., 2016) (Selvaraju et al., 2016) (Sundararajan et al., 2017)

Decomposition

LRP for LSTM
LRP (Arras et al., 2017)

(Bach et al., 2015) Probabilistic Diff
.’ (Zintgraf et al., 2016)

Deep Taylor Decomposition
(Montavon et al., 2017 (arXiv 2015))

Optimization LIME Meaningful Perturbations PatternLRP
(Ribeiro et al., 2016) (Fong & Vedaldi 2017)  (Kindermans et al., 2017)

Deconvolution

Deconvolution Guided Backprop
(Zeiler & Fergus 2014) (Springenberg et al. 2015)

Understanding the Model

Deep Visualization _ _ _ TCAV
(Yosinski et al., 2015) _ Synthesis of preferred inputs (Kim et al. 2018)
o Inverting CNNs (Nguyen et al. 2016)
Feature visualization (Dosovitskiy & Brox, 2015)
Erhan et al. 2009 _ . .
( ) Inverting CNNs RNN cell state analysis NSRS DISSEHIET

(Mahendran & Vedaldi, 2015) (Karpathy et al., 2015) (Zhou et al. 2017)



Explaining Neural Network Predictions

Layer-wise relevance Propagation (LRP, Bach et al 15) first method to explain nonlinear classifiers
- based on generic theory (related to Taylor decomposition — deep taylor decomposition M et al 17)

- applicable to any NN with monotonous activation, BoW models, Fisher Vectors, SVMs etc.

Explanation: “Which pixels contribute how much to the classification” (Bach et al 2015)
(what makes this image to be classified as a car)

f(z) = Zp hp

Sensitivity / Saliency: “Which pixels lead to increase/decrease of prediction score when changed”
(what makes this image to be classified more/less as a car) (Baehrens et al 10, Simonyan et al 14)

HOO

_Haxp

Deconvolution: “Matching input pattern for the classified object in the image” (Zeiler & Fergus 2014)
(relation to f(x) not specified)

Each method solves a different problem!!!



Explaining Neural Network Predictions

Classification

large activation
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Explaining Neural Network Predictions

Explanation




Explaining Neural Network Predictions

Explanation

Theoretical interpretation
Deep Taylor Decomposition T"; depends on the activations and the weights



Explaining Neural Network Predictions

Explanation

large relevance

Relevance Conservation Property

Zp’r'p:...:zim:zj’rj:...:f(a:)



Explaining Predictions Pixel-wise
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Some Digestion on Explaining



Sensitivity analysis Is often not the
guestion that you would like to ask!

Image Sensitivity /5 LRP




Advantages of LRP over both Sensitivity and Deconvolution

Positive and Negative Evidence: LRP distinguishs between positive evidence,

supporting the classification decision, and negative evidence, speaking against the
prediction

Image Class '3’ Class 9’

LRP indicates what speaks

0 for class ‘3’ and speaks

o : o

- against class ‘9

> The sign of Sensitivity and

§ Deconvolution does not have
8 this interpretation.

-> taking norm gives unsigned
visualizations



Applying Explanation in Vision and Text



Application: Faces

What makes
you look sad ?

What makes
you look old ?

What makes
you look attractive ?




Application: Document Classification

rec.motorcycles sci.space

sci.med

It is the body's reaction to a strange environment. It appears to be induced
partly to physical discomfort and part to mental distress. Some people are
more prone to it than others, like some people are more prone to get sick

on a roller coaster than others. The mental part is usually induced by

a lack of clear indication of which way is up or down, ie: the Shuttle is
normally oriented with its cargo bay pointed towards Earth, so the Earth

(or ground) is "above" the head of the . About 50% of the astronauts
experience some form of motion sickness, and has done numerous tests in
BPABE to try to see how to keep the number of occurances down.

It is the body's reaction to a strange environment. It appears to be induced
partly to physical discomfort and part to mental distress. Some people are
more prone to it than others, like some people are more prone to get sick

on a roller coaster [l others. The mental part is usually induced by

a lack of clear indication of which way is up or down, ie: the Shuttle is
normally oriented with its cargo bay pointed towards Earth, so the Earth

(or ground) is "above" the head of the astronauts. About 50% of the astronauts
experience some form of motion sickness, and NASA has done numerous tests in
BBEEE to try to see how to keep the number of occurances down.

It is the body's reaction to a strange environment. It appears to be induced
partly to physical [ lSSSI@EE and part to mental distress. Some people are
more prone to it than others, like some people are more prone to get sick

on a roller coaster than others. The mental part is usually induced by

a lack of clear indication of which way is up or down, ie: the Shuttle is
normally oriented with its cargo bay pointed towards Earth, so the Earth

(or ground) is "above" the head of the astronauts. About 50% of the astronauts
experience some form of motion sickness, and NASA has done numerous tests in
space to try to see how to keep the number of occurances down.



Explaining LSTMs

Second example: Visual question answering on the CLEVR dataset.

Question LRP

there is a metallic cube ; are there is a metallic cube ; are
there any large cyan metallic there @Ry large €yan metallic

objects behind it ? objects IEHEE it

—> model understands the question and correctly

. " . . Arras et al., in pre
identifies the object of interest ( prep)



Understanding learning models
for complex gaming scenarios



Analysing Breakout: LRP vs. Sensitivity




Machine Learning in the Sciences



Machine Learning in Neuroscience



Brain Computer Interfacing: ,Brain Pong*

Leitmotiv: »let the machines learn¢

Berlin Brain Computer interface

* ML reduces patient training from
300h -> 5min

Applications

* help/hope for patients (ALS,
stroke...)

* neuroscience
* neurotechnology (video

coding, gaming, monitoring
driving)




ML4 Quantum Chemistry



Machine Learning in Chemistry,
Physics and Materials

Matthias Rupp, Anatole von Lilienfeld,
Alexandre Tkatchenko, Klaus-Robert Muller

[Rupp et al. Phys Rev Lett 2012, Snyder et al. Phys Rev Lett
2012, Hansen et al. JCTC 2013 and JPCL 2015]



Machine Learning for chemical compound space

Ansatz: { ZI, RI} IE) E

instead of

HY = E¥Y

[from von Lilienfeld]




Coulomb representation of molecules

Coulomb Matrix (Rupp, Muller et al 2012, PRL)

d(M,M’) — \/ZIJ |MIJ _ Mleg



Kernel ridge regression

Distances between M define Gaussian kernel matrix K

d(M, M')?
k(M,M') = exp| — (M, M)

Predict energy as sum over weighted Gaussians

202

using weights that minimize error in training set

min Eest(M,) — ET¢/ SN o
> (BN (ML) — E;7)"+ ) o

a = (K+AI)~'E™/

Exact solution

As many parameters as molecules + 2 global parameters, characteristic length-scale or KT of system
(o), and noise-level (A)

[from von Lilienfeld]



Predicting Energy of small molecules: Results

: March 2012
multilayer neural network Rupp et al., PRL
. e cigenspectrum 9.99 kca”m_OI
EE 31\ o sorted Coulomb (kernels + eigenspectrum)
T 30 [« | ® stochastic Coulomb
2 o5 December 2012
0 Montavon et al., NIPS
= 20 3.51 kcal/mol
_% 15 (Neural nets + Coulomb sets)
= 10
S 2015 Hansen et al 1.3kcal/mol at
& 9 10 million times faster than the
0 : - : - state of the art
0 2000 4000 6000 8000
# samples Prediction considered chemically
accurate when MAE is below 1
kcal/mol

g
“E Dataset available at http://quantum-machine.org



Standard ML

A
.
Is the Generalization Error

all we need? ML

model

Y

predictions

Generalization error




Application: Comparing Classifiers (Lapuschkin et al CVPR 2016)

Test error for various classes:

aeroplane bicycle bird boat bottle bus car
Fisher 79.08% 66.44% 45.90% 70.88% 27.64% 69.67% 80.96%
DeepNet 88.08% 79.69% 80.77% 77.20% 3548% | 121% 86.30%
cat chair cCOw diningtable dog |/ horse | motorbike
Fisher 59.92% 51.92% 47.60% 58.06% 42.28% ( 80.45% 69.34%
DeepNet 81.10% 51.04% 61.10% 64.62% 76.17% \ 81.60% /| 79.33%
person pottedplant | sheep sofa train | tVmomitor mAP
Fisher 85.10% 28.62% 49.58% 49.31% 82.71% 54.33% 59.99%
DeepNet 92.43% 49.99% 74.04% 49.48% 87.07% 67.08% 72.12%
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Learning Atomistic Representations with
Deep Tensor Neural Networks

Kristof Schutt,Farhad Arbabzadah,
Stefan Chmiela, Alexandre Tkatchenko,
Klaus-Robert Muller

[Schiitt et al. Nature Communications 2017, Chmiela et al
Science Advances 2017, Brockherde et al Nat. Comm. 2017]



Deep Tensor Neural Network (DTNN) for representing molecules

Input: Atomic numbers and interatomic distances
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Gaining insights for Physics



Toward Quantum Chemical Insights: supervised

Energy predictlon:

E= 27:1 E;
Learned potential:

Eprobe Q”Xf(r) — Eprobe

[Schutt et al. Nat Comm. 2017,
Schiitt et al JCP 2018]

Energy (eV)
0,506




Machine Learning for
morpho-molecular Integration

Alexander Binder'®, Michael Bockmayr?®!’, Miriam Hiigele!, Stephan Wienert?, Daniel
Heim?, Katharina Hellweg®, Albrecht Stenzinger?*, Laura Parlow?, Jan Budczies?, Benjamin
Goeppert*, Denise Treue?, Manato Kotani®, Masaru Ishii®, Manfred Dietel?, Andreas Hocke?,
Carsten Denkert®”, Klaus-Robert Miiller:®* and Frederick Klauschen?"*



Interpretable ML

Bach et al., PLoS1 2015

Klauschen et al., US Patent #9558550

Binder et al., in revision



Machine learning based integration of
morphological and molecular tumor profiles

MICROSCOPIC AND MOLECUAR DATA TRAINING

histo-morphological
features

molecular features
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Take Home messages



Sensitivity analysis Is not the
guestion that you would like to ask!

Sensitivity £ LRP




Sensitivity analysis:

Observation:

d

> (

=1

or
OX;

)" = 19,12

-~ *.. | Problem: sensitivity
ore s . 1 analysis does not
= .. =* 7| highlight cars

Sensitivity analysis explains a
variation of the function, not
the function value itself.




Explanation for simple models does
not necessary work for deep models



What works for simple models doesn’t work for deep models.

e

N y
- ) *. - ~,.."-' A
h : . o gradient- vulnerableto 17
based > shattered /\N\/\
o8 - -, .« = | methods gradients 0 > X
"’ b e WA el 0 1
_

g = . Our LRP method is robust to this.




Layer-Wise Relevance Propagation

. “Tricks of
Desirable ;:Jr'(_)pem es the trade” Underlying theory
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LRP works 4 all: deep models, LSTMSs,
kernel methods ...
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A Clarification on LRP

LRP # Gradient x Input

... except for special cases. LRP was developed among others
because gradient-based methods aren’t satisfying.

When comparing with LRP, please use appropriate LRP
parameters (Like when comparing different ML techniques).

Good news: No need to reimplement LRP, check our software at



http://www.heatmapping.org/

Layer-Wise Relevance Propagation

Robustly and reliably :  Applicable to generaldeep i  Rules can be engineered to
explains complex state- networks, but also (kernel) i enforce desirable properties or
of-the-art deep neural SVMs, LSTMs, Bag-of-words :  derived from a theoretical
networks. i classifiers. i principle (deep Taylor

decomposition).
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Explanations can be evaluated:
Pixel flipping (model agnostic)
And beyond LRP and DTD

[Samek et al. IEEE TNNLS 2017]



Explanation helps to improve models

frame 1 frame 4 frame7 frame 10 frame 13 frame 16

R A

-

Explaining ML, Now What?



Explanation helps to find flaws
INn models

[Lapuschkin et al CVPR 2016]



Support Vector Data description

Support Vector Data Description (SVDD)

@ Compute minimal enclosing sphere with center ¢ and radius R
@ Anomaly score as the distance to center c, that is f(x) = [|¢(x) — c||
® Accept data point x if f(x) < R and ...

. reject x if f(x) > R




Image One=Class DTD Sobel edge detector

Explaining one-class T e

Diata distribution
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Figure 1: [lustration of the outlier detection nnd explonstion setting. Lefic Dota & genemted from an unknown distobution, we are for
exnmple interested in potentinl outliers; Middle: Unsupervised mechine lenrning techmigques estimate the dstn genersting distribution and
nsaign an outler score of®) to unlikely dete points; Fight: Our explanation method sssiges & relemnes score to every input vorishle that
reflects the contribution of mput varisble =; to the model decision. "We apply dithering to all hentrmaps for printing relisbdlity.

Figure &: A One-Class SVM is trained on snall 7 x 7 patches of the very image itself. Parameter v = 0.1 is set to allow at most 107 outliers.
Images from o texture data set [11] (row one, two and four) and PatternNet [61); top image is altered by us. For every image, we show Left:
input image; Middis decompaosition of one-class SVM; Right Sobel filter for reference. Al images were resized to 286 pixels width.

n

[Kaufmann, Muller, Montavon 2018]



Getting new Insights in the Sciences

Example: Understanding physical systems at the quantum level.

molecular structure

CH, - .  C,N,H,
time-independent » ot e

Schroédinger Equation ®.: :é:. & >‘: ol ﬂt%

HVY = EWV B " "

P

Hamiltonian  energy

atomization energy

equation describing

general physical systems o Interpretation of the trained
DNN approximation DNN model

for organic molecules

[Schutt et al. Nat Comm. 2017, Schitt et al JCP 2018, Chmiela et al. Sci.
Adv. 2017, Chmiela et al Nat Comms 2018...]




Semi-final Conclusion

 explaining & interpreting nonlinear models is essential

« orthogonal to improving DNNs and other models

* need for opening the blackbox ...

 understanding nonlinear models is essential for Sciences & Al
* new theory: LRP Is based on deep taylor expansion

« when looking at XAl techniques: compare the right thing!

« XAl and WHO & ITU, Regulations etc.

* Note: even the most complex DL models are explainable nowadays

www.heatmapping.org



Thank you for your attention

Visit:

http://www.heatmapping.org

» Jutorials
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Tutorial Paper
Montavon et al., “Methods for interpreting and understanding deep neural networks”, Digital Signal
Processing, 73:1-5, 2018

Keras Explanation Toolbox

https://github.com/albermax/innvestigate

\

=|l =
ﬁ ~ Fraunhofer Elulﬁlﬁﬂ

NNNNNNNNNNNNNNNNNNN

Heinrich Hertz Institute



https://github.com/albermax/innvestigate
https://github.com/albermax/innvestigate

Grégoire Montavon

Genevieve B. Orr
Klaus-Robert Miiller (Eds.)

State-of-the-Art

Neural Networks:
Tricks of the Trade

Second Edition

LNCS 7700

F

RELCOADED

Interfacing

Z S edited by
- | : = Guido Dornhege, José del R. Milldn,
||L . |5 Thilo Hinterberger, Dennis J. McFarland,
and Klaus-Robert Miiller
@ Springer

foreword by Terrence J. Sejnowski




&8DC

BERLIN BIG
DATA CENTER




Further Reading |

Bach, S., Binder, A., Montavon, G., Klauschen, F., Miller, K. R., & Samek, W. (2015). On pixel-wise
explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one, 10(7)
:20130140.

Bach, S., Binder, A., Montavon, G., Muller, K.-R. & Samek, W. (2016). Analyzing Classifiers: Fisher Vectors
and Deep Neural Networks. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., & Miiller, K. R. (2010). How to
explain individual classification decisions. Journal of Machine Learning Research, 11, 1803-1831.

Brockherde, F., Vogt, L., Li, L., Tuckerman, M., Burke, K., Miller, K. R., By-passing the Kohn-Sham
Equations with machine learning, Nature Communications, 8:872 (2017)

Blum, L. C., & Reymond, J. L. (2009). 970 million druglike small molecules for virtual screening in the
chemical universe database GDB-13. Journal of the American Chemical Society, 131(25), 8732-8733.

Braun, M. L., Buhmann, J. M., & Miller, K. R. (2008). On relevant dimensions in kernel feature spaces. The
Journal of Machine Learning Research, 9, 1875-1908

Chmiela, S., Tkatchenko, A., Sauceda, H. E., Poltavsky, I., Schiitt, K. T., & Mdller, K. R. (2017). Machine
learning of accurate energy-conserving molecular force fields. Science Advances, 3(5), e1603015.

Chmiela, S., Sauceda, HE, Miiller, K. R., Tkatchenko, A. (2018). Towards exact molecular dynamics
simulations with machine-learned force fields. Nat Commun. 2018 Sep 24;9(1):3887

Hansen, K., Montavon, G., Biegler, F., Fazli, S., Rupp, M., Scheffler, M., von Lilienfeld, A.O., Tkatchenko,
A., and Mdller, K.-R. "Assessment and validation of machine learning methods for predicting molecular
atomization energies." Journal of Chemical Theory and Computation 9, no. 8 (2013): 3404-34109.

Hansen, K., Biegler, F., Ramakrishnan, R., Pronobis, W., von Lilienfeld, O. A., Mdller, K. R., & Tkatchenko,
A. (2015). Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and
Nonlocality in Chemical Space, J. Phys. Chem. Lett. 6, 2326-2331.



Further Reading Il

Mdller, K. R., Mika, S., Ratsch, G., Tsuda, K., & Scholkopf, B. (2001). An introduction to kernel-based
learning algorithms. Neural Networks, IEEE Transactions on, 12(2), 181-201.

Montavon, G., Braun, M. L., & Mlller, K. R. (2011). Kernel analysis of deep networks. The Journal of
Machine Learning Research, 12, 2563-2581.

Montavon, Grégoire, Katja Hansen, Siamac Fazli, Matthias Rupp, Franziska Biegler, Andreas Ziehe,
Alexandre Tkatchenko, Anatole V. Lilienfeld, and Klaus-Robert Muller. "Learning invariant
representations of molecules for atomization energy prediction." In Advances in Neural Information
Processing Systems, pp. 440-448. 2012.

Montavon, G., Braun, M., Krueger, T., & Muller, K. R. (2013). Analyzing local structure in kernel-based
learning: Explanation, complexity, and reliability assessment. IEEE Signal Processing Magazine, 30(4),
62-74.

Montavon, G., Orr, G. & Miller, K. R. (2012). Neural Networks: Tricks of the Trade, Springer LNCS 7700.
Berlin Heidelberg.

Montavon, Gregoire, Matthias Rupp, Vivekanand Gobre, Alvaro Vazquez-Mayagoitia, Katja Hansen,
Alexandre Tkatchenko, Klaus-Robert Miiller, and O. Anatole von Lilienfeld. "Machine learning of
molecular electronic properties in chemical compound space." New Journal of Physics 15, no. 9
(2013): 095003.

Montavon, G., Lapuschkin, S., Binder, A., Samek, W. and Miller, K.R., 2017. Explaining nonlinear
classification decisions with deep taylor decomposition. Pattern Recognition, 65, pp.211-222.

Montavon, G., Samek, W. and Miller, K.R., 2018. Methods for interpreting and understanding deep
neural networks. Digital Signal Processing, 73, 1-15.

Snyder, J. C., Rupp, M., Hansen, K., Miller, K. R., & Burke, K. Finding density functionals with
machine learning. Physical review letters, 108(25), 253002. 2012.



Further Reading Il

Pozun, Z. D., Hansen, K., Sheppard, D., Rupp, M., Miller, K. R., & Henkelman, G., Optimizing transition
states via kernel-based machine learning. The Journal of chemical physics, 136(17), 174101. 2012 .

K. T. Schutt, H. Glawe, F. Brockherde, A. Sanna, K. R. Miiller, and E. K. U. Gross, How to represent crystal
structures for machine learning: Towards fast prediction of electronic properties Phys. Rev. B 89,
205118 (2014)

K.T. Schitt, F Arbabzadah, S Chmiela, KR Miiller, A Tkatchenko, Quantum-chemical insights from deep
tensor neural networks, Nature Communications 8, 13890 (2017)

Ratsch, G., Onoda, T., & Miiller, K. R. (2001). Soft margins for AdaBoost. Machine learning, 42(3), 287-
320.

Rupp, M., Tkatchenko, A., Miiller, K. R., & von Lilienfeld, O. A. (2012). Fast and accurate modeling of
molecular atomization energies with machine learning. Physical review letters, 108(5), 058301.

Scholkopf, B., Smola, A., & Miiller, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue
problem. Neural computation, 10(5), 1299-13109.

Smola, A. J., Schdélkopf, B., & Miller, K. R. (1998). The connection between regularization operators and
support vector kernels. Neural networks, 11(4), 637-649.

Scholkopf, B., Mika, S., Burges, C. J., Knirsch, P., Miller, K. R., Ratsch, G., & Smola, A. J. (1999). Input
space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks, 10(5),
1000-1017.

Tsuda, K., Kawanabe, M., Ratsch, G., Sonnenburg, S., & Muller, K. R. (2002). A new discriminative kernel
from probabilistic models. Neural Computation, 14(10), 2397-2414.

Zien, A., Ratsch, G., Mika, S., Scholkopf, B., Lengauer, T., & Muller, K. R. (2000). Engineering support
vector machine kernels that recognize translation initiation sites. Bioinformatics, 16(9), 799-807.



