Part 4: Applications

Wojciech Samek, Grégoire Montavon

September 18, 2020

Outline

Walk-through examples

Meta-Explanations

Explanation beyond visualization

XAI in the Sciences

Outlook

LRP Applied to Different Problems

objects behind it ?

Digits (Bach' 15)

Class '3'

General Images (Bach' 15, Lapuschkin'16)

Faces (Lapuschkin'17)

🗾 Fraunhofer

нні

	Spee	ech (Becker	' 18)				
	2.5 ru0js						
	-2.5 0.0	e.25	0.5 1000	0.75			
	0.2	illion -	unh marin math				
	0.0	0.25	0.5 time	0.75			
V	/QA (Sam	ek'19)	Video (And	ders'19)			
the	re is a metal	lic cube ; are					
the	re <mark>any</mark> large	<mark>cyan</mark> metallic		1.1.1			

EEG (Sturm'16)

Histopathology (Hägele'19)

Text Analysis (Arras'16 &17)

Morphing Attacks (Seibold'18)

Gait Patterns (Horst'19)

fMRI (Thomas'18)

Wojciech Samek, Grégoire Montavon

Image

ECML/PKDD 2020 Tutorial: Explainable AI for Deep Networks - Basics and Extensions

Class '9'

LRP Applied to Different Problems

BoW / Fisher Vector models (Bach'15, Arras'16, Lapuschkin'16 ...)

Clustering (Kauffmann'19)

Wojciech Samek, Grégoire Montavon

🜌 Fraunhofer

нн

Walk-Through Examples

Faces in the wild (from Flickr) #images: 26,580

Task: Predict gender & age (range)

(0-2), (4-6), (8-13), (15-20), (25-32), (38-43), (48-53), (60+)

🖉 Fraunhofer 🔤

	A	С	G	V
[i]	51.4 87.0	52.1 87.9	54.3 89.1	_
[r]	51.9 87.4	52.3 88.9	53.3 89.9	_
[m]	53.6 88.4	54.3 89.7	56.2 90.7	_
[i,n]	_	51.6 87.4	56.2 90.9	53.6 88.2
[r , n]	-	52.1 87.0	57.4 91.9	_
[m,n]	-	52.8 88.3	58.5 92.6	56.5 90.0
[i,w]	_	_	_	59.7 94.2
[r , w]	-	_	_	_
[m,w]	-	-	_	62.8 95.8

	A	С	G	V
[i]	88.1	87.4	87.9	_
[r]	88.3	87.8	88.9	_
[m]	89.0	88.8	89.7	_
[i,n]	_	89.9	91.0	92.0
[r , n]	-	90.6	91.6	_
[m,n]	-	90.6	91.7	92.6
[i,w]	_	_	_	90.5
[r , w]	-	_	_	_
[m,w]	_	_	—	92.2

A = AdienceNet C = CaffeNet G = GoogleNetV = VGG-16

🗾 Fraunhofer

- [i] = in-place face alignment
- [r] = rotation based alignment
- [m] = mixing aligned images for training
- [n] = initialization on Imagenet
- [w] = initialization on IMDB-WIKI

(Lapuschkin et al., 2017)

Fraunhofer Wojc

Principle: Explain each layer type (input, conv., fully connected layer) with the optimal rule according to DTD.

Composite LRP

(Montavon et al., 2019) (Kohlbrenner et al., 2019)

Wojciech Samek, Grégoire Montavon

🗾 Fraunhofer

Name	Formula	Usage	DTD
LRP-0[7]	$R_j = \sum_k \frac{a_j w_{jk}}{\sum_{0,j} a_j w_{jk}} R_k$	upper layers	~
LRP- ϵ [7]	$R_j = \sum_k \frac{a_j w_{jk}}{\epsilon + \sum_{0,j} a_j w_{jk}} R_k$	middle layers	\checkmark
$LRP-\gamma$	$R_{j} = \sum_{k} \frac{a_{j}(w_{jk} + \gamma w_{jk}^{+})}{\sum_{0,j} a_{j}(w_{jk} + \gamma w_{jk}^{+})} R_{k}$	lower layers	\checkmark
LRP- $\alpha\beta$ [7]	$\left R_{j} = \sum_{k} \left(\alpha \frac{(a_{j}w_{jk})^{+}}{\sum_{0,j} (a_{j}w_{jk})^{+}} - \beta \frac{(a_{j}w_{jk})^{-}}{\sum_{0,j} (a_{j}w_{jk})^{-}} \right) R_{k} \right $	lower layers	\times^{\star}
flat [30]	$R_j = \sum_k \frac{1}{\sum_j 1} R_k$	lower layers	×
w^2 -rule [36]	$R_i = \sum_j \frac{w_{ij}^2}{\sum_i w_{ij}^2} R_j$	first layer (\mathbb{R}^d)	\checkmark
$z^{\mathcal{B}}$ -rule [36]	$R_{i} = \sum_{j} \frac{x_{i}w_{ij} - l_{i}w_{ij}^{+} - h_{i}w_{ij}^{-}}{\sum_{i} x_{i}w_{ij} - l_{i}w_{ij}^{+} - h_{i}w_{ij}^{-}}R_{j}$	first layer (pixels)	\checkmark
	(* DTD interpretation only for th	te case $\alpha = 1$,	$\beta = 0.$

(Montavon et al., 2019) (Kohlbrenner et al., 2019)

Fraunhofer Wojciech Samek, Grégoire Montavon

нні

Unmask Clever Hans examples

IMDB-WIKI

	accuracy	1-off
ImageNet pretrained	56.5	90.0
IMDB-WIKI pretrained	63.0	96.0

Fraunhofer

(Lapuschkin et al., 2019)

Wojciech Samek, Grégoire Montavon

🗾 Fraunhofer

нні

Fraunhofer Wojciech Sar

(Lapuschkin et al., 2019)

Wojciech Samek, Grégoire Montavon

濍 Fraunhofer

NIPS architecture	Nature architecture
C1 $(4 \times 8 \times 8) \rightarrow (16), [4 \times 4]$	C1 $(4 \times 8 \times 8) \rightarrow (32), [4 \times 4]$
C2 $(16 \times 4 \times 4) \rightarrow (32), [2 \times 2]$	C2 $(32 \times 4 \times 4) \rightarrow (64), [2 \times 2]$
	C3 $(64 \times 3 \times 3) \rightarrow (64), [1 \times 1]$
F1 (2592) \rightarrow (256)	F1 $(3136) \rightarrow (512)$
F2 (256) \rightarrow (4)	F2 $(512) \rightarrow (4)$

Small architecture $C1 (4 \times 8 \times 8) \rightarrow (32), [4 \times 4]$

C2 $(32 \times 4 \times 4) \rightarrow (64), [2 \times 2]$ C3 $(64 \times 3 \times 3) \rightarrow (64), [1 \times 1]$ F1 $(3136) \rightarrow (4)$

(Lapuschkin et al., 2019)

Varying size of replay memory: (state, action, reward, next state)

(Lapuschkin et al., 2019)

Meta-Explanations

Meta-Explanations

SpRAy's idea: Explain *whole dataset* decisions of a ML model by systematically analyzing distributions of LRP heatmaps.

Fraunhofer TF Wojci

Wojciech Samek, Grégoire Montavon ECML/PKDD 2020 Tutorial: Explainable AI for Deep Networks - Basics and Extensions (Lapuschkin et al., 2019)

Spectral Relevance Analysis (SpRAy)

Analyze the data, from the model's point of view, via attribution maps⁴ and Spectral Clustering⁵⁶

Wojciech Samek, Grégoire Montavon ECML/PKDD 2020 Tutorial: Explainable AI for Deep Networks - Basics and Extensions (Lapuschkin et al., 2019)

Spectral Relevance Analysis (SpRAy)

SpRAy for Fisher Vector and DNN classifiers on PASCAL VOC 2017.

(Lapuschkin et al., 2019)

Spectral Relevance Analysis (SpRAy)

Wojciech Samek, Grégoire Montavon ECML/PKDD 2020 Tutorial: Explainable AI for Deep Networks - Basics and Extensions

🗾 Fraunhofer

нні

Explanation beyond visualization (Unhansing Datasets)

Anders et al. 2019

Wojciech Samek, Grégoire Montavon ECML/PKDD 2020 Tutorial: Explainable AI for Deep Networks - Basics and Extensions

🜌 Fraunhofer

Automating Clever Hans Detection

Extending SpRAy from [4]

- Further automating spurious cluster/class discovery by analyzing Φ with FDA^7
- Visualizing the spectal embedding $\Phi,$ instead of affinity structure

$$I(w) = \frac{w^{\mathsf{T}} S_b w}{w^{\mathsf{T}} S_w w}$$

Automating Clever Hans Detection

The solution of FDA can be understood as directions of maximal separability between clusterings, and, when normalized and plugged into the original objective, gives scores of separability.

Automating Clever Hans Detection

Wojciech Samek, Grégoire Montavon ECML/PKDD 2020 Tutorial: Explainable AI for Deep Networks - Basics and Extensions

нні

Isolate artefact, add to other/all classes, re-train model.

.

addition of artifact candidates degrades the model performance, thus validating their Clever-Hans property.

ClArC'ed models (blue) show better performance on the poisoned validation set, implying increased robustness against Clever-Hans artifacts.

Wojciech Samek, Grégoire Montavon

Explanation beyond visualization (Explanation-Guided Training)

Sun et al. 2020

Wojciech Samek, Grégoire Montavon ECML/PKDD 2020 Tutorial: Explainable AI for Deep Networks - Basics and Extensions

\overline 🖉 Fraunhofer

Explanation-Guided Training

Cross-domain few-shot classification task (CD-FSC)

Explanation-Guided Training

Explanation-Guided Training

5-way 1-shot	Cars	Places	CUB	Plantae
RN	$29.40 \pm 0.33\%$	$48.05 \pm 0.46\%$	44.33±0.43%	$34.57 \pm 0.38\%$
FT-RN	$30.09 \pm 0.36\%$	$48.12 \pm 0.45\%$	$44.87 {\pm} 0.44\%$	$35.53 {\pm} 0.39\%$
LRP-RN	$30.00 \pm 0.32\%$	$48.74 {\pm} 0.45\%$	$45.64{\pm}0.42\%$	$36.04 {\pm} 0.38\%$
LFT-RN	$30.27 \pm 0.34\%$	$48.07 {\pm} 0.46\%$	$47.35 \pm 0.44\%$	$35.54 {\pm} 0.38\%$
LFT-LRP-RN	30.68±0.34 %	50.19±0.47 %	47.78±0.43 %	36.58±0.40 %

🗏 Fraunhofer 📲

Explanation beyond visualization (XAI-Based Pruning)

Yeom et al. 2019

XAI-Based Pruning

Wojciech Samek, Grégoire Montavon

нні

XAI-Based Pruning

	VGG-16	0.0019	99.36		119.55	15.50
	Weight	0.0050	97.90		47.47	7.02
Cats and Dogs	Taylor expansion	0.0051	97.54	60 %	51.19	3.86
	Gradient	0.0057	97.19		57.27	3.68
	LRP	0.0044	98.24		43.75	6.49
	VGG-16	0.0369	82.26		119.96	15.50
	Weigh	0.0383	71.84		39.34	5.48
Oxford Flower 102	Taylor expansion	0.0327	72.11	70%	41.37	2.38
	Gradient	0.0354	70.53		42.68	2.45
	LRP	0.0296	74.59		37.54	4.50
	VGG-16	0.0157	91.04		119.59	15.50
	Weight	0.0183	93.36		74.55	11.70
Cifar 10	Taylor expansion	0.0176	93.29	30 %	97.30	8.14
	Gradient	0.0180	93.05		97.33	8.24
	LRP	0.0171	93.42		89.20	9.93

With fine-tuning

Wojciech Samek, Grégoire Montavon

🜌 Fraunhofer

нні

XAI-Based Pruning

Wojciech Samek, Grégoire Montavon

нні

Our approach:

- Recurrent neural networks (CNN + LSTM) for whole-brain analysis
- LRP allows to interpret the results

🗾 Fraunhofer

нні

Hägele et al., 2020

Wojciech Samek, Grégoire Montavon

🗾 Fraunhofer

нні

Experiments	Description	Heatmaps	Benefit of visual explanation	Lifecycle phase
Feature visualisation	Tumour classification in various entities (BRCA, SKCM & LUAD)	Fig. 1	Visual and quantitative verification of learned features on cell level	Deployment phase (e.g. computer-aided diagnosis systems)
Class sampling ratio	Different class sampling ratios in mini-batches	Fig. 3	Deliberate manipulation for different application use cases (contrary effects of recall and precision)	Deployment phase
Dataset bias	Label bias affecting entire datasets	Fig. 4 (top)	Bias detectable on a single sample, no additional held-out data necessary	Development phase
"Class correlated" bias	Artificial corruption correlated with one class label	Fig. 4 (middle)	Bias detectable on a single sample, possible to detect very small artefacts	Development phase
Sample bias	Exclusion of a tissue type in the training data (here: necrosis)	Fig. 4 (bottom)	Bias detectable on few samples of the missing tissue type, small regions of the missing tissue type also precisely detectable	Development phase (i. e. iterative process to create comprehensive dataset)

determining the label solely from the patch's centre cell (yellow mark)

small artificial corruption

training a classifier on a dataset lacking examples of necrosis

Fraunhofer Wojciech Samek, Grégoire Montavon

Conclusion

Conclusion

XXAI: Extending Explainable AI Beyond Deep Models and Classifiers

Explanations can be used beyond visualization purposed

Theoretical approaches to XAI exist (e.g. Deep Taylor, Shapley). That allows to compute really meaningful explanations, also beyond deep neural networks.

Large interested of XAI in scientific communities

Tutorial / Overview Papers

- W Samek, G Montavon, S Lapuschkin, C Anders, KR Müller. <u>Toward</u> <u>Interpretable Machine Learning: Transparent Deep Neural Networks and</u> <u>Beyond</u> arXiv:2003.07631, 2020
- G Montavon, W Samek, KR Müller. <u>Methods for Interpreting and Understanding Deep Neural</u> <u>Networks</u> Digital Signal Processing, 73:1-15, 2018 [bibtex]
- W Samek, T Wiegand, KR Müller. <u>Explainable Artificial Intelligence: Understanding, Visualizing</u> and Interpreting <u>Deep Learning Models</u> ITU Journal: ICT Discoveries - Special Issue 1 - The Impact of AI on Communication Networks and Services, 1(1):39-48, 2018 [preprint, bibtex]
- W Samek, KR Müller. <u>Towards Explainable Artificial Intelligence</u> in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer LNCS, 11700:5-22, 2019 [preprint, bibtex]
- G Montavon, A Binder, S Lapuschkin, W Samek, KR Müller. <u>Layer-Wise Relevance Propagation: An Overview</u> in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer LNCS, 11700:193-209, 2019 [preprint, bibtex]

Methods Papers

- S Bach, A Binder, G Montavon, F Klauschen, KR Müller, W Samek. <u>On Pixel-wise Explanations for Non-Linear Classifier Decisions by</u> <u>Layer-wise Relevance Propagation</u> PLOS ONE, 10(7):e0130140, 2015 [preprint, bibtex]
- G Montavon, S Lapuschkin, A Binder, W Samek, KR Müller. <u>Explaining NonLinear Classification Decisions with Deep Taylor</u> <u>Decomposition</u> Pattern Recognition, 65:211–222, 2017 [preprint, bibtex]
- M Kohlbrenner, A Bauer, S Nakajima, A Binder, W Samek, S Lapuschkin. <u>Towards best practice in explaining neural network decisions</u> <u>with LRP</u>

Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN), 2019 [preprint, bibtex]

- A Binder, G Montavon, S Lapuschkin, KR Müller, W Samek. <u>Layer-wise Relevance Propagation for Neural Networks with Local Renormalization Layers</u> Artificial Neural Networks and Machine Learning – ICANN 2016, Part II, Lecture Notes in Computer Science, Springer-Verlag, 9887:63-71, 2016 [preprint, bibtex]
- PJ Kindermans, KT Schütt, M Alber, KR Müller, D Erhan, B Kim, S Dähne. <u>Learning how to explain neural networks: PatternNet and PatternAttribution</u> Proceedings of the International Conference on Learning Representations (ICLR), 2018
- L Rieger, P Chormai, G Montavon, LK Hansen, KR Müller. <u>Structuring Neural Networks for More Explainable Predictions</u> in Explainable and Interpretable Models in Computer Vision and Machine Learning, 115-131, Springer SSCML, 2018

Fraunhofer

Explaining Beyond DNN Classifiers

- J Kauffmann, KR Müller, G Montavon. <u>Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class Models</u> Pattern Recognition, 107198, 2020 [preprint]
- L Arras, J Arjona, M Widrich, G Montavon, M Gillhofer, KR Müller, S Hochreiter, W Samek. <u>Explaining and Interpreting LSTMs</u> in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer LNCS, 11700:211-238, 2019 [preprint, bibtex]
- J Kauffmann, M Esders, G Montavon, W Samek, KR Müller. <u>From Clustering to Cluster Explanations via Neural Networks</u> arXiv:1906.07633, 2019
- O Eberle, J Büttner, F Kräutli, KR Müller, M Valleriani, G Montavon. <u>Building and Interpreting Deep Similarity Models</u> arXiv:2003.05431, 2020
- T Schnake, O Eberle, J Lederer, S Nakajima, K T. Schütt, KR Müller, G Montavon. <u>XAI for Graphs: Explaining Graph Neural Network</u> <u>Predictions by Identifying Relevant Walks</u> arXiv:2006.03589, 2020

Evaluation of Explanations

- A Osman, L Arras, W Samek. <u>Towards Ground Truth Evaluation of Visual Explanations</u> arXiv:2003.07258, 2020 [preprint]
- W Samek, A Binder, G Montavon, S Bach, KR Müller. <u>Evaluating the Visualization of What a Deep Neural Network has Learned</u> IEEE Transactions on Neural Networks and Learning Systems, 28(11):2660-2673, 2017 [preprint, bibtex]
- L Arras, A Osman, KR Müller, W Samek. <u>Evaluating Recurrent Neural Network Explanations</u> Proceedings of the ACL Workshop on BlackboxNLP, 113-126, 2019 [preprint, bibtex]
- G Montavon. <u>Gradient-Based Vs. Propagation-Based Explanations: An Axiomatic Comparison</u> in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer LNCS, 11700:253-265, 2019 [bibtex]

Detecting Model and Dataset Artefacts

- S Lapuschkin, S Wäldchen, A Binder, G Montavon, W Samek, KR Müller. <u>Unmasking Clever Hans Predictors and Assessing What</u> <u>Machines Really Learn</u> Nature Communications, 10:1096, 2019 [preprint, bibtex]
- S Lapuschkin, A Binder, G Montavon, KR Müller, W Samek. <u>Analyzing Classifiers: Fisher Vectors and Deep Neural Networks</u> Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2912-2920, 2016 [preprint, bibtex]
- CJ Anders, T Marinc, D Neumann, W Samek, KR Müller, S Lapuschkin. <u>Analyzing ImageNet with Spectral Relevance Analysis: Towards</u> <u>ImageNet un-Hans'ed</u> arXiv:1912.11425, 2019
- J Kauffmann, L Ruff, G Montavon, KR Müller. <u>The Clever Hans Effect in Anomaly Detection</u> arXiv:2006.10609, 2020

Software Papers

- M Alber, S Lapuschkin, P Seegerer, M Hägele, KT Schütt, G Montavon, W Samek, KR Müller, S Dähne, PJ Kindermans <u>iNNvestigate</u> <u>neural networks!</u> Journal of Machine Learning Research, 20(93):1–8, 2019 [preprint, bibtex]
- M Alber. <u>Software and Application Patterns for Explanation Methods</u> in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer LNCS, 11700:399-433, 2019 [bibtex]
- S Lapuschkin, A Binder, G Montavon, KR Müller, W Samek <u>The Layer-wise Relevance Propagation Toolbox for Artificial Neural</u>
 <u>Networks</u>

Journal of Machine Learning Research, 17(114):1–5, 2016 [preprint, bibtex]

Application to Sciences

- I Sturm, S Bach, W Samek, KR Müller. <u>Interpretable Deep Neural Networks for Single-Trial EEG Classification</u> Journal of Neuroscience Methods, 274:141–145, 2016 [preprint, bibtex]
- M Hägele, P Seegerer, S Lapuschkin, M Bockmayr, W Samek, F Klauschen, KR Müller, A Binder. <u>Resolving Challenges in Deep</u> <u>Learning-Based Analyses of Histopathological Images using Explanation Methods</u> Scientific Reports, 10:6423, 2020 [preprint, bibtex]
- A Binder, M Bockmayr, M Hägele, S Wienert, D Heim, K Hellweg, A Stenzinger, L Parlow, J Budczies, B Goeppert, D Treue, M Kotani, M Ishii, M Dietel, A Hocke, C Denkert, KR Müller, F Klauschen. <u>Towards computational fluorescence microscopy: Machine learningbased integrated prediction of morphological and molecular tumor profiles</u> arXiv:1805.11178, 2018
- F Horst, S Lapuschkin, W Samek, KR Müller, WI Schöllhorn. <u>Explaining the Unique Nature of Individual Gait Patterns with Deep Learning</u>
 Scientific Reports, 9:2391, 2019 [preprint biblex]

Scientific Reports, 9:2391, 2019 [preprint, bibtex]

- F Horst, D Slijepcevic, S Lapuschkin, AM Raberger, M Zeppelzauer, W Samek, C Breiteneder, WI Schöllhorn, B Horsak. <u>On the</u> <u>Understanding and Interpretation of Machine Learning Predictions in Clinical Gait Analysis Using Explainable Artificial Intelligence</u> arXiv:1912.07737, 2020 [preprint]
- AW Thomas, HR Heekeren, KR Müller, W Samek. <u>Analyzing Neuroimaging Data Through Recurrent Deep Learning Models</u> Frontiers in Neuroscience, 13:1321, 2019 [preprint, bibtex]
- P Seegerer, A Binder, R Saitenmacher, M Bockmayr, M Alber, P Jurmeister, F Klauschen, KR Müller. <u>Interpretable Deep Neural Network</u> to Predict Estrogen Receptor Status from Haematoxylin-Eosin Images Artificial Intelligence and Machine Learning for Digital Pathology, Springer LNCS, 12090, 16-37, 2020 [bibtex]

Fraunhofer 1

Application to Text

- L Arras, F Horn, G Montavon, KR Müller, W Samek. <u>"What is Relevant in a Text Document?": An Interpretable Machine Learning Approach</u> PLOS ONE, 12(8):e0181142, 2017 [preprint, bibtex]
- L Arras, G Montavon, KR Müller, W Samek. <u>Explaining Recurrent Neural Network Predictions in Sentiment Analysis</u> Proceedings of the EMNLP Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis, 159-168, 2017 [preprint, bibtex]
- L Arras, F Horn, G Montavon, KR Müller, W Samek. <u>Explaining Predictions of Non-Linear Classifiers in NLP</u> Proceedings of the ACL Workshop on Representation Learning for NLP, 1-7, 2016 [preprint, bibtex]
- F Horn, L Arras, G Montavon, KR Müller, W Samek. <u>Exploring text datasets by visualizing relevant words</u> arXiv:1707.05261, 2017

Application to Images & Faces

- S Lapuschkin, A Binder, KR Müller, W Samek. <u>Understanding and Comparing Deep Neural Networks for Age and Gender Classification</u> Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCVW), 1629-1638, 2017 [preprint, bibtex]
- C Seibold, W Samek, A Hilsmann, P Eisert. <u>Accurate and Robust Neural Networks for Face Morphing Attack Detection</u> Journal of Information Security and Applications, 2020 [preprint, bibtex]
- J Sun, S Lapuschkin, W Samek, A Binder. <u>Understanding Image Captioning Models beyond Visualizing Attention</u> arXiv:2001.01037, 2020 [preprint]
- S Bach, A Binder, KR Müller, W Samek. <u>Controlling Explanatory Heatmap Resolution and Semantics via Decomposition Depth</u> Proceedings of the IEEE International Conference on Image Processing (ICIP), 2271-2275, 2016 [preprint, bibtex]
- A Binder, S Bach, G Montavon, KR Müller, W Samek. <u>Layer-wise Relevance Propagation for Deep Neural Network Architectures</u> Proceedings of the 7th International Conference on Information Science and Applications (ICISA), 6679:913-922, Springer Singapore, 2016 [preprint, bibtex]
- F Arbabzadah, G Montavon, KR Müller, W Samek. <u>Identifying Individual Facial Expressions by Deconstructing a Neural Network</u> Pattern Recognition - 38th German Conference, GCPR 2016, Lecture Notes in Computer Science, 9796:344-354, 2016 [preprint, bibtex]

🗏 Fraunhofer 👖

Application to Video

- C Anders, G Montavon, W Samek, KR Müller. <u>Understanding Patch-Based Learning of Video Data by Explaining Predictions</u> in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer LNCS 11700:297-309, 2019 [preprint, bibtex]
- V Srinivasan, S Lapuschkin, C Hellge, KR Müller, W Samek. <u>Interpretable human action recognition in compressed domain</u> Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1692-1696, 2017 [preprint, bibtex]

Application to Speech

 S Becker, M Ackermann, S Lapuschkin, KR Müller, W Samek. <u>Interpreting and Explaining Deep Neural Networks for Classification of Audio Signals</u> arXiv:1807.03418, 2018

Application to Neural Network Pruning

 S Yeom, P Seegerer, S Lapuschkin, S Wiedemann, KR Müller, W Samek. <u>Pruning by Explaining: A Novel Criterion for Deep Neural</u> <u>Network Pruning</u> arXiv:1912.08881, 2019

Model Improvement & Training Enhancement

 J Sun, S Lapuschkin, W Samek, Y Zhao, NM Cheung, A Binder. <u>Explanation-Guided Training for Cross-Domain Few-Shot Classification</u> arXiv:2007.08790, 2020

Our new book is out

Wojciech Samek · Grégoire Montavon · Andrea Vedaldi · Lars Kai Hansen · Klaus-Robert Müller (Eds.)

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Link to the book

https://www.springer.com/gp/book/9783030289539

Organization of the book

Part I Towards AI Transparency Part II Methods for Interpreting AI Systems Part III Explaining the Decisions of AI Systems Part IV Evaluating Interpretability and Explanations Part V Applications of Explainable AI

-> 22 Chapters

Fraunhofer Wojciech Samek, Grégoire Montavon ECML/PKDD 2020 Tutorial: Explaina

Thank you for your attention

http://www.heatmapping.org

- Tutorials
- Software
- Online Demos

