
1/41

ECML/PKDD 2020 Tutorial: Explainable AI for Deep Networks: Basics and Extensions

Part 2: Methods for Explaining DNNs

Wojciech Samek, Grégoire Montavon

September 18, 2020



2/41

Outline of Part 2

I Defining the problem of explanation

I Self-explainable models

I Advantages & limitations

I Post-hoc explanations

I Perturbation-based approaches
I Propagation-based approaches



3/41

Defining The Problem of Explanation

I Consider we have a trained model f .

I We give to this model a data point

x ∈ Rd , where each feature xi composing

it is assumed to be interpretable (e.g.

physical measurement, pixel, or word).

I The model produces for x an output f (x).

I We would like to build an explanation

R = (Ri )i indicating to what extent each

feature i contributes to the prediction.

decisionML blackboxdata

explanation



4/41

Illustration for a Linear Model

I First step: Compute the prediction

f (x) = w>x

= w1x1 + w2x2 + · · ·+ wd xd

I Second step: Extract an explanation

R1 ← w1x1

R2 ← w2x2

...

Rd ← wd xd

R← (R1,R2, . . . ,Rd)

decisionML blackboxdata

explanation



5/41

From Linear Models to Deep Networks

horse

Question: How to trace which input features have contributed to the prediction in a more

general deep model?



6/41

Self-Explainable Deep Networks

horse

Idea: Restrict connectivity to ease the problem of attribution.



7/41

The Generalized Additive Model (GAM) [6]

horse

Observation: Attribution is easy: R1 = g1(x1),R23 = g23(x2, x3) . . .



8/41

Bag-Of-Local-Features [5]

Image source:
Brendel et al. (2019) Approx-
imating CNNs with Bag-of-
local-Features models works
surprisingly well on ImageNet



9/41

Bag-Of-Local-Features [5]

Image source:
Brendel et al. (2019) Approx-
imating CNNs with Bag-of-
local-Features models works
surprisingly well on ImageNet

I With a larger receptive field (i.e. with less restrictions on the model), the prediction

accuracy improves but the explanation becomes more blurry.



10/41

Advantages and Limitations of Self-Explainable Models

Advantages

I Explanations can be easily

extracted without further

analysis.

I The model can be designed to

be maximally interpretable

(e.g. by penalizing the use of

uninterpretable features).

I Model constraints can be

relaxed when explanation is

coarse-grained (e.g. pixels →
patches).

Limitations

I Self-explainable model might lack representation

power, e.g. the GAM cannot represent a simple

max-pooling operation.

I Even when the model predicts well ...

I The model’s strategy may be influenced by

its restricted structure, and this may lead to

a less natural prediction strategy from

which it is harder to extract knowledge.

I The model’s strategy will likely be

computationally less efficient than a

standard model.



11/41

Beyond Generalized Additive Models

trade spa�al
resolu�on
for seman�c
resolu�on

detect complex
objects in
images

Predic�on
output

input



12/41

Example: Convolutional Neural Networks

Properties

I Top-layers can capture

long-range interactions.

I Increasingly many features can

be built in higher layers.

I Representation remains

finite-dimensional at each layer

(→ computationally efficient).



13/41

Explaining Beyond Generalized Additive Models

spa�al
resolu�on
too low for
explana�on

how to
redistribute
to pixels?trade spa�al

resolu�on
for seman�c
resolu�on

detect complex
objects in
images

Predic�on Explana�on
output

input



14/41

A Different Approach to Explanation: Perturbation

Examples from the literature:

I Occlusion [18], Prediction Difference Analysis [19]



15/41

Perturbation Analysis

DNN 3.35

DNN

DNN

2.15

3.26

. . .

explana�ondata

3.38DNN

Ri = f (x)− f (x−i )



16/41

Perturbation Analysis

Advantages

I Can be applied to any function f (x).

I Consistent for GAMs (Ri = f (x)− f (x−i ) = gi (x)).

Limitations

I Slow (function f must be reevaluated for each occlusion)

I Intrinsically local, e.g. fails to explain max-pooling when several

features in the pool are activated.

I Potentially biased by what is inserted in place of the removed patch.

(Alternative: remove and inpaint [1, 13].)

max(x1, x2)

3–0

–1



17/41

Continuous Perturbations

I Consider a sequence of inputs x(0), x(1), . . . , x(N)

interpolating between x(0) = 0 and x(N) = x.

I Perform for each n the perturbation analysis

R
(n)
i = f (x(n))− f (x

(n)
−i )

where

x
(n)
−i = (x

(n)
1 , . . . , x

(n)
i−1, x

(n−1)
i , x

(n)
i+1, . . . , x

(n)
d )

I Sum them up:

Ri =
∑N

n=1 R
(n)
i

. . .

. . .

. . .

. . .

. . .

. . .

. . .



18/41

Continuous Perturbations

. . .

. . .

. . .

. . .

. . .

. . .

. . . I Observation: When the interpolation steps are small

enough and when f is differentiable,

R
(n)
i ≈ [∇f (x(n))]i · (x(n)i − x

(n−1)
i )

where the function’s gradient appears.

I At each step, the perturbation for all dimensions can be

computed using only one gradient evaluation.

I This is the integrated gradients method (in discretized

form) [17].



19/41

Integrated Gradients and Gradient× Input

I Integrated Gradients (IG) [17]:

Ri =

N∑
n=1

[∇f (x(n))]i · (x (n)
i − x

(n−1)
i )

I Gradient× Input (GI) [15, 2, 9]:

Ri = [∇f (x)]i · xi

i.e. an input feature i contributes if it is present in the data (xi > 0) and if the model

reacts to it ([∇f (x)]i > 0).

Proposition: When x(0), x(1), . . . , x(N) linearly interpolate between x(0) = 0 and

x(N) = x, and when f is positively homogeneous, i.e. ∀t≥0 : f (tx) = tf (x), then

IG and GI produce the same result.



20/41

Integrated Gradients and Gradient× Input

Proposition: When x(0), x(1), . . . , x(N) linearly interpolate between x(0) = 0 and

x(N) = x, and when f is positively homogeneous, i.e. ∀t≥0 : f (tx) = tf (x), then

IG and GI produce the same result.

Proof: We start with IG and arrive at GI using a property

of positively homogeneous functions (cf. note).

Ri =

N∑
n=1

[∇f (x(n))]i · (x (n)
i − x

(n−1)
i ) (1)

=

N∑
n=1

[∇f (x)]i · (x (n)
i − x

(n−1)
i ) (2)

= [∇f (x)]i ·
N∑

n=1

(x
(n)
i − x

(n−1)
i ) = [∇f (x)]i · xi (3)

Note: A positively homogeneous

function satisfies ∀t≥0 : f (tx) =
tf (x). Differentiating on both

sides gives

∂

∂x
f (tx) =

∂

∂x
tf (x)

t∇f (tx) = t∇f (x)

therefore, the gradient is the

same on any point on the seg-

ment (0, x).



21/41

Gradient× Input in Practice

Example: Gradient× Input explanation of the VGG-16 neural network output neuron ‘viaduct’

for a given input image:

Observation: There is an exceedingly large amount of positive (red) and negative (blue) scores.

Explanations also appear noisy and are hard to interpret.



22/41

Problem: Gradients are ‘Shattered’

I We look at the DNN output (and its

gradient) along some trajectory in

the input space, e.g. an athlete

lifting a barebell.

I The function is relatively stable, but

the gradient strongly oscillates and

appears noisy (cf. [4]).



23/41

Shattered Gradients: A Construction

Consider the function:

g(x) = 2 · ReLU(x)− 4 · ReLU(x − 0.5)

defined on the interval [0, 1].

We apply the function recursively to form a deep neural network.

function output max slope # linear pieces

g(x) [0, 1] 2 2

g ◦ g(x) [0, 1] 4 4

g ◦ g ◦ g(x) [0, 1] 8 8

g ◦ g ◦ g ◦ g(x) [0, 1] 16 16

Potentially exponential growth of gradient and linear pieces (cf. [11]).

0 0.5 1

1



24/41

SmoothGrad [16]: “Removing Noise by Adding Noise”

Idea: Perform the gradient-based analysis with multiple random perturbations ε1, . . . , εT of

the input, and average the explanations.

Example: Smooth Gradient× Input

Ri =
1

T

T∑
t=1

[∇f (x + εt)]i [x + εt ]i

T = 1 T = 4 T = 16 T = 64

no
is

e 
= 

0.
5 

st
d

no
is

e 
= 

1.
0 

st
d

input



25/41

SmoothGrad

Advantages

I Reduces explanation noise.

I Simple to implement (just call the same code multiple time)

I Widely applicable (can be applied on top of any explanation technique).

Limitations

I Computation cost increases by a factor T while

explanation noise is in the best case only reduced

by a factor
√

T .

I Adding noise to the input implies that we explain a

slightly different quantity than the input (this may

add a bias to the explanation).

T = 1 T = 4 T = 16 T = 64

no
is

e 
= 

0.
5 

st
d

no
is

e 
= 

1.
0 

st
d

input



26/41

From Function-Based to Propagation-Based

Questions:

I Can using the structure of the network explicitly (e.g. by running a special propagation

pass) help to produce a better explanation?

I Can this approach reduce explanation noise without having to evaluate the function

multiple times?



27/41

The ‘Deconvolution’ Method [18]

Image source:

Zeiler et al. (2014)
Visualizing and Under-
standing Convolutional
Networks

I Max-pooling layers: propagate to the winner

I Convolutional layers: convolve with

transposed weights

I ReLU layers: apply the ReLU function



28/41

The ‘Deconvolution’ Method

Image source:

Zeiler et al. (2014)
Visualizing and Under-
standing Convolutional
Networks

I Observation: Gradient noise has disappeared ⇒ leveraging structure is useful.

I Limitation: The method was meant as a visualization rather than as an explanation (it

does not tell how much each input variable has contributed to the prediction).



29/41

Layer-wise Relevance Propagation (LRP) [3, 10]

LRP-ϵBox LRP-γ LRP-0

Rj

R = (Ri)i

RkRj←k

Ideas:

I Use the structure of the neural network

to robustly compute relevance scores for

the input features.

I Propagate the output of the network

backwards by means of propagation rules.

I Propagation rules can be tuned for

explanation quality. E.g. sensitive in

top-layers, robust in lower layers.



30/41

Layer-wise Relevance Propagation (LRP) [3, 10]

LRP-ϵBox LRP-γ LRP-0

Rj

R = (Ri)i

RkRj←k

Some notation:

I j and k : neurons from successive layers

I wjk : weight connecting neuron j to

neuron k

I w0k : bias for neuron k .

I
∑

0,j sum over all input neurons j of

neuron k and the bias.

I ReLU neuron: ak = max
(

0,
∑

0,j aj wjk

)
.



31/41

Dissecting a LRP Propagation Rule

LRP-γ

Rj RkRj←k Example: LRP-γ [10]

Rj =
∑

k

aj(wjk + γw+
jk )∑

0,j aj(wjk + γw+
jk )

Rk

I aj(wjk + γw+
jk ): Contribution of neuron aj to the

activation ak .

I Rk ‘Relevance’ of neuron k available for redistribution.

I
∑

0,j aj(wjk + γw+
jk ) Normalization term that

implements conservation.

I
∑

k : Pool all ‘relevance’ received by neuron j from the

layer above.



32/41

Dissecting a LRP Propagation Rule (2nd view)

LRP-γ

Rj RkRj←k

Example: LRP-γ [10]

Rj = aj ·
(∑

k

(wjk + γw+
jk )∑

0,j aj(wjk + γw+
jk )

Rk

)

I aj : Activation of neuron j .

I
(∑

k . . .
)

: Sensitivity of neural network output to aj .

i.e. similar interpretation as for Gradient× Input, but now at

each layer.



33/41

Effect of LRP Rules on Explanation

VGG-16 Network

3x
3 

@
 6

4

3x
3 

@
 6

4

3x
3 

@
 1

28

3x
3 

@
 1

28

3x
3 

@
 2

56

3x
3 

@
 2

56

3x
3 

@
 2

56

3x
3 

@
 5

12

3x
3 

@
 5

12

3x
3 

@
 5

12

7x
1 

@
 4

09
6

1x
1 

@
 4

09
6

1x
1 

@
 1

00
0

3x
3 

@
 5

12

3x
3 

@
 5

12

3x
3 

@
 5

12

LRP-0

LRP-ϵ

LRP-°

LRP-0LRP-ϵLRP-°

LRP rules must be chosen carefully to deliver best expla-

nation quality. Generally, LRP rules are set different at

each layer (cf. [10] for heuristics).



34/41

Layer-Wise Relevance Propagation

Advantages

I Good explanation quality on deep networks.

I Fast (in the order of a single forward/backward pass).

I Flexible (the multiple hyperparameters can be tuned to match the user needs).

Limitations

I The LRP propagation strategy must be adapted to each new architecture.

I LRP makes some assumptions about the structure of the model (i.e. it works for many

neural networks but not for all models).



35/41

Connections between Explanation Methods

Perturba�ons

IntGrad

Grad x Input

SmoothGrad

Deconvolu�on

LRP

con�nuous

reduc�on

+ robustness

perturba�on-based
explana�ons

propaga�on-based
explana�ons

+ robustness

in part 3

self-explainable
models

Bag-of-local-
features

GAMs



36/41

More Explanation Methods

Other methods that have been proposed to attribute the prediction to input features:

I LIME [12]: learns a local surrogate model and analyze it.

I SHAP [8]: based on the game theory framework of Shapley values.

I Meaningful Perturbations [7]: synthesizes an optimal perturbation with gradient ascent.

I Grad-CAM [14]: combines gradient-based and propagation-based approaches.



37/41

Summary of Part 2

I Self-explainable models can be practical, but they often lack sufficient representation

power and can be computationally costly.

I Explaining general DNNs is hard (no directly identifiable contributions, gradient noise),

but possible.

I Two important categories of ‘post-hoc’ explanation techniques (perturbation-based

and propagation-based).

I The LRP explanation technique is specially designed to explain deep networks (perform

attribution by taking advantage of the layered structure).



38/41

References I

[1] C. Agarwal, D. Schonfeld, and A. Nguyen.

Removing input features via a generative model to explain their attributions to classifier’s decisions.

CoRR, abs/1910.04256, 2019.

[2] M. Ancona, E. Ceolini, C. Öztireli, and M. H. Gross.

Gradient-based attribution methods.

In Explainable AI, volume 11700 of Lecture Notes in Computer Science, pages 169–191. Springer, 2019.

[3] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek.

On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation.

PLoS ONE, 10(7):e0130140, 07 2015.

[4] D. Balduzzi, M. Frean, L. Leary, J. P. Lewis, K. W. Ma, and B. McWilliams.

The shattered gradients problem: If resnets are the answer, then what is the question?

In ICML, volume 70 of Proceedings of Machine Learning Research, pages 342–350. PMLR, 2017.

[5] W. Brendel and M. Bethge.

Approximating cnns with bag-of-local-features models works surprisingly well on imagenet.

In ICLR (Poster). OpenReview.net, 2019.



39/41

References II

[6] R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, and N. Elhadad.

Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission.

In KDD, pages 1721–1730. ACM, 2015.

[7] R. C. Fong and A. Vedaldi.

Interpretable explanations of black boxes by meaningful perturbation.

In ICCV, pages 3449–3457. IEEE Computer Society, 2017.

[8] S. M. Lundberg and S. Lee.

A unified approach to interpreting model predictions.

In NIPS, pages 4765–4774, 2017.

[9] G. Montavon.

Gradient-based vs. propagation-based explanations: An axiomatic comparison.

In Explainable AI, volume 11700 of Lecture Notes in Computer Science, pages 253–265. Springer, 2019.

[10] G. Montavon, A. Binder, S. Lapuschkin, W. Samek, and K.-R. Müller.

Layer-wise relevance propagation: An overview.

In Explainable AI, volume 11700 of Lecture Notes in Computer Science, pages 193–209. Springer, 2019.



40/41

References III

[11] G. F. Montúfar, R. Pascanu, K. Cho, and Y. Bengio.

On the number of linear regions of deep neural networks.

In NIPS, pages 2924–2932, 2014.

[12] M. T. Ribeiro, S. Singh, and C. Guestrin.

”why should I trust you?”: Explaining the predictions of any classifier.

In KDD, pages 1135–1144. ACM, 2016.

[13] W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R. Müller.

Toward interpretable machine learning: Transparent deep neural networks and beyond.

CoRR, abs/2003.07631, 2020.

[14] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra.

Grad-cam: Visual explanations from deep networks via gradient-based localization.

In ICCV, pages 618–626. IEEE Computer Society, 2017.

[15] A. Shrikumar, P. Greenside, A. Shcherbina, and A. Kundaje.

Not just a black box: Learning important features through propagating activation differences.

CoRR, abs/1605.01713, 2016.



41/41

References IV

[16] D. Smilkov, N. Thorat, B. Kim, F. B. Viégas, and M. Wattenberg.

Smoothgrad: removing noise by adding noise.

CoRR, abs/1706.03825, 2017.

[17] M. Sundararajan, A. Taly, and Q. Yan.

Axiomatic attribution for deep networks.

In ICML, volume 70 of Proceedings of Machine Learning Research, pages 3319–3328. PMLR, 2017.

[18] M. D. Zeiler and R. Fergus.

Visualizing and understanding convolutional networks.

In ECCV (1), volume 8689 of Lecture Notes in Computer Science, pages 818–833. Springer, 2014.

[19] L. M. Zintgraf, T. S. Cohen, T. Adel, and M. Welling.

Visualizing deep neural network decisions: Prediction difference analysis.

In ICLR (Poster). OpenReview.net, 2017.


