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EMBC Tutorial on Interpretable and 
Transparent Deep Learning

Wojciech Samek
(Fraunhofer HHI)

Grégoire Montavon
(TU Berlin)

Klaus-Robert Müller
(TU Berlin)

13:30 - 14:00 Introduction KRM

14:00 - 15:00 Techniques for Interpretability GM

15:00 - 15:30 Coffee Break ALL

15:30 - 16:15 Evaluating Interpretability & Applications WS

16:15 - 17:15 Applications in BME & the Sciences and Wrap-Up KRM



  2/54

Narrowing the Concept of Explanation
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Explaining ML Models: Two Views

mechanistic 
understanding

functional 
understanding

Understanding what 
mechanism the network 
uses to solve a problem or 
implement a function.

Understanding how the 
networks relates the input 
to the output variables.
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Explaining ML Models: Two Problems 

model analysis decision analysis

possible approach 
- build prototypes of "typical" 
examples of a certain class.

possible approach 
- identify which input variables 
contribute to the prediction.
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Explaining ML Models: Two Problems

Model Analysis

“what does something 
predicted as a pool table 
typically look like.“

Decision Analysis

“why a given image is classified as 
a pool table”

model’s prototypical
pool table

some pool table why it is classified 
as a pool table
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A Survey of Explanation Techniques
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Overview of Explanation Methods

1. Perturbation-Based Methods

2. Meaningful Perturbations

3. Simple Taylor Expansion

4. Gradient x Input

4. Layer-Wise Relevance Propagation (LRP)
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Approach 1: Perturbation

DNN

DNN

DNN

castle

… still a 
castle

not a castle

Idea: Assess features relevance by testing the model response to 
their removal or perturbation.
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Approach 1: Perturbation

Advantages

- Simple.

- Applicable to any ML model.

Disadvantages

- Need to reevaluate the function 
for many perturbations → slow

- Perturbation process may 
introduce artefacts in the image 
→ unreliable

input

Building an explanation 

i=1   i=2  i=3  ...

i=1   i=2  i=3  ...

i=6

i=6

heatmap
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Approach 2: Meaningful Perturbations

Idea: Don’t iterate over all possible perturbation, search locally for the 
best perturbation m*  (or mask).

Fong and Vedaldi 2017, Interpretable Explanations of Black Boxes by Meaningful 
Perturbation
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Approach 2: Meaningful Perturbations

Advantages

- Can be applied to any 
(differentiable) ML model.

Limitations

- Need to run an optimization 
procedure
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Approach 3: (Simple) Taylor Expansions

Taylor Expansion

Idea: identify the contribution of input features as the first-
order terms of a Taylor expansion
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Approach 3: (Simple) Taylor Expansions

Advantages

- Can be applied to any (differentiable and mildly nonlinear) ML model.

Limitations

- Need to find a meaningful root point where to perform the expansion.

  (→ optimization, or heuristics)
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Approach 4: Gradient x Input

Gradient x Input

Motivation

- Compute an explanation in a single pass without having to optimize or 
search for a root point.
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Approach 4: Gradient x Input

Taylor Expansions

Gradient x Input

Observation: Complex analyses reduce to gradient x input for simple cases.

Perturbation Analysis

Question: Does it work in practice?
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Approach 4: Gradient x Input

Alber et al. iNNvestigate Neural Networks, JMLR Software, 2019

Input ExplanationPrediction
(class: baseball)
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Approach 4: Gradient x Input

Alber et al. iNNvestigate Neural Networks, JMLR Software, 2019

Observation: 
Explanations are 
noisy.

Input

VGG-16

Inception V3

ResNet 50

ExplanationModel
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Approach 4: Gradient x Input

 

Not local enough. Too much 
context introduced when 
multiplying by the input.

Shattered gradient problem → 
gradient of deep nets has low 
informative value

Two reasons why explanations are noisy:
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Approach 4: Gradient x Input
The Shattered gradients problem [Montufar’14, Balduzzi’17]
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Overview of Explanation Methods - Recap

1. Perturbation-Based Methods
      → universally applicable but slow

2. Meaningful Perturbations
→ widely applicable but requires optimization

3. Taylor Expansions
→ quite widely applicable but requires to find a root point

4. Gradient x Input
→ applicable with some restrictions
→ fast, O(forward pass)
→ does not work well on highly nonlinear functions (e.g. DNNs)
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Layer-Wise Relevance Propagation
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Idea: Reusing Model Structure

model is a composition 
of neurons. This can be 

exploited to make 
explanation easier.
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Layer-wise Relevance Propagation (LRP)

input output

explanation

1. forward pass

2. conservative propagation
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Various LRP Propagation Rules

LRP-0

LRP-ϵ

LRP-γ
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Various LRP Propagation Rules

LRP-0

LRP-ϵ

LRP-γ

Equivalent to gradient x input, noisy

Reduces noise, increases sparsity

Reduces noise, reduces sparsity
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Trick: Use a Different Rule at each Layer
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Implementing LRP Efficiently

LRP-0/ϵ/γ

More general LRP rule
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Implementing LRP in PyTorch
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Various LRP Rules Used in Practice
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Justifying LRP as a
‘Deep Taylor Decomposition’
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Simple Taylor Decomposition
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Deep Taylor Decomposition

hard to analyze
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Deep Taylor Decomposition

Key Idea: Use a “relevance model” that is easy to analyze
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Deep Taylor Decomposition

1. Relevance model

2. Taylor expansion

(LRP-0)
(LRP-ϵ)

(LRP-γ)

3. Choosing the reference point
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LRP What’s New
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LRP What’s New

1. Neuralization Propagation (NEON)

2. Dataset-Wide Analysis with SpRAy
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NEON (Neuralization-Propagation)

LRP’s idea: To robustly explain a model, leverage the neural 
network structure of the decision function.

NEON’s idea: When the ML model is not a neural network 
(e.g. a kernel machine), convert it into a neural network first 
(‘neuralize’ it).
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Neuralizing the One-Class SVM

Original one-class
SVM structuration:

Neuralized
one-class
SVM:
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Neuralizing the One-Class SVM

LRP
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Neuralized One-Class SVM
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Neuralizing K-means
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LRP What’s New

1. Neuralization Propagation (NEON)

2. Dataset-Wise Analysis with SpRAy
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Dataset-Wide Analysis

LRP’s idea: Explain individual decisions of a ML model in a 
way that is reliable and interpretable for a human.

SpRAy’s idea: Explain whole dataset decisions of a ML model 
by systematically analyzing distributions of LRP heatmaps.

model analysis decision analysis

possible approach 
- build prototypes of "typical" 
examples of a certain class.

possible approach 
- identify which input variables 
contribute to the prediction.

model analysis decision analysis

possible approach 
- build prototypes of "typical" 
examples of a certain class.

possible approach 
- identify which input variables 
contribute to the prediction.

LRP SpRAy
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Dataset-Wide Analysis

This analysis is possible due to the 
conservation property of LRP.

Idea: detect different strategies 
of classifiers on dataset-wide 
basis.
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Dataset-Wide Analysis

This analysis is possible due to the 
conservation property of LRP.

Idea: detect different strategies 
of classifiers on dataset-wide 
basis.

more in Part 3
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SpRAy (Spectral Relevance Analysis)
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SpRAy (Spectral Relevance Analysis)

Lapuschkin et al. Unmasking Clever Hans predictors and assessing what machines 
really learn (2019)

more in Part 4
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Open Challenges
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Open Challenges: Systematic Application

- How much manual tuning is needed to adapt LRP to new architectures?
- Can explanation techniques be implemented in a modular way?
- Can explanation be made differentiable and learned?
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Open Challenges: Systematic Evaluation

- How to evaluate the quality of an explanation?
- Is there a tradeoff between explanation faithfulness and interpretabilty?
- What are the limits of explanations.
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Open Challenges: Systematic Evaluation

more in Part 3

- How to evaluate the quality of an explanation?
- Is there a tradeoff between explanation faithfulness and interpretabilty?
- What are the limits of explanations?
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Summary

• Before explaining a ML model, it is important to ask whether a given 
explanation techniques provides the desired type of explanation (e.g. 
local vs. global explanation).

• Many methods have been proposed explaining individual predictions. 
LRP requires to carefully tune propagation rules. After this initial 
step, LRP works quickly and reliably.

• LRP is not simply heuristics, LRP rules can be derived form the deep 
Taylor decomposition framework.

• Explanation methods such as LRP can be combined with other 
techniques to extend their scope of application (e.g. NEON for use 
with kernels, SpRAy for dataset-wide analysis).
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Check our website

Online demos, tutorials, code examples, etc.

n
and tutorial papers
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