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From ML Successes to Applications

Autonomous Driving

Medical Diagnosis

Networks (smart grids, etc.)
Visual Reasoning

AlphaGo beats Go 
human champ

Deep Net outperforms 
humans in image 
classification
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Can we interpret
what a ML model has 

learned?
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First, we need to define 
what we want from 
interpretable ML.
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Understanding Deep Nets: Two Views

Understanding what 
mechanism the network 
uses to solve a problem or 
implement a function.

Understanding how the 
network relates the input 
to the output variables.
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interpreting
predicted classes

explaining
individual decisions



  

Interpreting Predicted Classes

Image from Symonian’13

Example: “How does a goose typically look like 
according to the neural network?”

goose

non-goose
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Explaining Individual Decisions

Images from Lapuschkin’16

Example: “Why is a given image classified as a 
sheep?”

sheep

non-sheep
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Example: Autonomous Driving [Bojarski’17]

Input:

Decision

Bojarski et al. 2017 “Explaining How a Deep Neural Network Trained with End-to-
End Learning Steers a Car”

PilotNet

Explanation:
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Example: Pascal VOC Classification [Lapuschkin’16]

Comparing Performance on Pascal VOC 2007
(Fisher Vector Classifier vs. DeepNet pretrained on ImageNet)

Fisher classifier (pretrained) deep net

Lapuschkin et al. 2016. Analyzing Classifiers: Fisher Vectors and Deep Neural 
Networks



  11/45

Example: Pascal VOC Classification [Lapuschkin’16]

Lapuschkin et al. 2016. Analyzing Classifiers: Fisher Vectors and Deep Neural 
Networks
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Example: Medical Diagnosis [Binder’18]

A: Invasive breast cancer, H&E stain; B: Normal mammary glands and fibrous tissue, 
H&E stain; C: Diffuse carcinoma infiltrate in fibrous tissue, Hematoxylin stain

Binder et al. 2018 “Towards computational fluorescence microscopy: Machine learning-
based integrated prediction of morphological and molecular tumor profiles”
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Example: Quantum Chemistry [Schütt’17]

DFT calculation of 
the stationary 
Schrödinger 

Equation

DTNN,
Schütt’17

molecular structure (e.g. atoms positions)

molecular electronic properties (e.g. atomization energy)

PBE0,
Pedrew’86

interpretable insight

Schütt et al. 2017: Quantum-Chemical Insights from Deep Tensor Neural Networks
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Examples of Explanation Methods
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Explaining by Decomposing

Importance of a variable is the share of the function score 
that can be attributed to it.

Decomposition property:

input

DNN
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Explaning Linear Models

A simple method:
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Explaning Linear Models

Taylor decomposition approach:

Insight: explanation depends 
on the root point.
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Explaining Nonlinear Models

second-order terms are 
hard to interpret and 

can be very large
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Explaining Nonlinear Models by Propagation

Layer-Wise Relevance
Propagation (LRP) [Bach’15]
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Explaining Nonlinear Models by Propagation

Is there an
underlying 

mathematical 
framework?
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Deep Taylor Decomposition (DTD) [Montavon’17]

Question: Suppose that we have propagated LRP scores 
(“relevance”) until a given layer. How should it be 
propagated one layer further?

Key idea: Let’s use Taylor expansions for this.
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DTD Step 1: The Structure of Relevance

Observation: Relevance at each layer is a product of 
the activation and an approximately constant term.
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DTD Step 1: The Stucture of Relevance
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DTD Step 2: Taylor Expansion
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DTD Step 2: Taylor Expansion

Taylor expansion at root point:

Relevance can now be
backward propagated
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DTD Step 3: Choosing the Root Point

(same as LRP-α1β0)

(Deep Taylor generic)

✔

1. nearest root

2. rescaled excitations

Choice of root point
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DTD: Choosing the Root Point

(Deep Taylor generic)

Pixels domain

Choice of root point
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DTD: Choosing the Root Point

(Deep Taylor generic)

Choice of root point
Embedding:

image source:
Tensorflow tutorial
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DTD: Application to Pooling Layers

A sum-pooling layer over positive activations is equivalent to a ReLU 
layer with weights 1.

A p-norm pooling layer can be approximated as a sum-pooling layer 
multiplied by a ratio of norms that we treat as constant [Montavon’17].

 → Treat pooling layers as ReLU detection layers
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Deep Taylor Decomposition on ConvNets

LR
P-

α 1β 0

DT
D

 fo
r 

pi
xe

ls

LR
P-
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LR

P-
α 1β 0

LR
P-

α 1β 0
LR

P-
α 1β 0

LR
P-

α 1β 0 *

* For top-layers, other rules may improve selectivity

forward pass

backward pass
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Implementing Propagation Rules

Sequence of element-wise 
computations

Sequence of vector 
computations

Example: LRP-α1β0: 
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Implementing Propagation Rules
Example: LRP-α1β0: 

Code that reuses forward and gradient computations:
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How Deep Taylor / LRP Scales
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Implementation on Large-Scale Models [Alber’18]

https://github.com/albermax/innvestigate

https://github.com/albermax/innvestigate
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DTD for Kernel Models  [Kauffmann’18]

1. Build a neural network equivalent of the One-Class SVM:

Gaussian/Laplace Kernel

Student Kernel

2. Computes its deep Taylor
decomposition

Outlier score
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DTD: Choosing the Root Point (Revisited)

✔

✔

1. nearest root

3. rescaled activation

2. rescaled excitations

Choice of root point

2. LRP-α1β0

(Deep Taylor generic)

3. Another rule



  37/45

Selecting the Explanation Technique

How to select the
best root points?
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Selecting the Explanation Technique

Which rule leads to the 
best explanation?
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Selecting the Explanation Technique

What axioms should
an explanation satisfy?
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Selection based on Axioms

division by zero  →
scores explode.

LRP-α1β0
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Selection based on Axioms

discontinuous
step function

for bj = 0

LRP-α1β0
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Explainable ML: Challenges

Validating
Explanations

Underlying
mathematical
framework

Axioms of an
explanation

Perturbation
analysis [Samek’17]

Similarity to
ground truth

Human
perception
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Explainable ML: Opportunities

Using
Explanations

Human
interaction

Designing better
ML algorithms?

Extracting new
domain knowledge

Detecting unexpected
ML behavior

Finding weaknesses
of a dataset
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Check our webpage

with interactive demos, software, tutorials, ...

and our tutorial paper:

Montavon, G., Samek, W., Müller, K.-R. Methods for Interpreting and Understanding Deep 
Neural Networks, Digital Signal Processing, 2018
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