

lutorials

Interpretable Deep Learning: Towards Understanding & Explaining DNNs

Part 2: Methods of Explanation

Wojciech Samek, <u>Grégoire Montavon</u>, Klaus-Robert Müller

What Will be Covered in Part 2

Explaining Individual Decisions

Q: Where in the image the neural networks sees evidence for a car?

Examples of Methods that Explain Decisions

Baehrens	Int (rajan'17	Zintgraf'17	Ribeiro'16	Haufe'15
Gradien		Grad	Pred Diff	LIME	Pattern
Zurada'94	Symonian'13	Zeiler'14	Fong'		Kindermans'17
Gradient	Gradient	Occlusions	M Pert		PatternNet
Poulin'06 Additive	Lundber Shaple Landeck	y Bazeı Tayl	n'13 De	ontavon'17 ep Taylor	Shrikumar'17 DeepLIFT
Zeiler'1 Decon	4 Contrib		Bach'15 LRP	Zhang Excitation	
Carua	Spring	genberg'14	Zhou'16		araju'17
Fitted A	na'15 Gu	ided BP	GAP		d-CAM

Explaining Individual Decisions

Q: In which proportion has each car contributed to the prediction?

Explaining by Decomposing

Goal: Determine the <u>share</u> of the output that should be attributed to each input variable.

Decomposition property: $\sum_{i=1}^{d} R_i = f(x_1, \dots, x_d)$

Explaining by Decomposing

Goal: Determine the <u>share</u> of the output that should be attributed to each input variable.

Decomposing a prediction is generally difficult.

Sensitivity Analysis

explanation for "car" (heatmap):

computes for each pixel:

$$R_i = \left(\frac{\partial f}{\partial x_i}\right)^2 \quad --$$

Sensitivity Analysis

Question: If sensitivity analysis computes a decomposition of something: Then, *what* does it decompose?

 $R_i = \left(\frac{\partial f}{\partial x_i}\right)^2 \quad \Longrightarrow \quad \sum_{i=1}^d R_i = \|\nabla f(\mathbf{x})\|^2$

Sensitivity Analysis

Sensitivity analysis explains a *variation* of the function, not the function value itself.

input explanation for "car"

variation = make something appear less/more a car.

 $\sum_{i=1}^{d} R_i = \|\nabla f(\boldsymbol{x})\|^2$

The Taylor Expansion Approach

1. Take a linear model:

$$f(\mathbf{x}) = \sum_{i=1}^{d} w_i x_i + b$$

2. First-order expansion at root point:

$$f(\mathbf{x}) = \sum_{i=1}^{d} \frac{\partial f}{\partial x_i}\Big|_{\widetilde{\mathbf{x}}} \cdot (x_i - \widetilde{x}_i)$$

3. Identifying linear terms:

$$R_i = w_i \cdot (x_i - \widetilde{x}_i)$$

a decomposition

Observation: explanation depends on the root point.

The Taylor Expansion Approach

Obtained relevance scores

$$R_i = w_i \cdot (x_i - \widetilde{x}_i)$$

How to choose the root point ?

- Closeness to the actual data point
- Membership to the input domain (e.g. pixel space)
- Membership to the data manifold.

Non-Linear Models

Nonlinear model

$$f(\mathbf{x}) = \sum_{j} \rho \left(\sum_{i=1}^{d} w_{ij} x_i + b_j \right)$$

$$f(\mathbf{x}) = \sum_{i=1}^{d} \frac{\partial f}{\partial x_i} \Big|_{\widetilde{\mathbf{x}}} \cdot (x_i - \widetilde{x}_i) + o(\mathbf{x}\mathbf{x}^{\top})$$

second-order terms are hard to interpret and can be very large

Simple Taylor decomposition is not suitable for highly non-linear models.

X

 $\widetilde{\mathbf{x}}$

Overcoming NonLinearity

Integrated Gradients [Sundararajan'17]:

• Fully decomposable

• Require computing an integral (expensive)

• Which integration path?

[Sundararajan'17] Axiomatic Attribution for Deep Networks. ICML 2017: 3319-3328 ^{14/36}

Overcoming NonLinearity

Special case when the origin is a root point and the gradient along the integration path is constant:

$$f(\mathbf{x}) = \sum_{i=1}^{d} \int_{\boldsymbol{\xi}=\mathbf{0}}^{\mathbf{x}} \frac{\partial f}{\partial x_{i}} \cdot d\xi_{i}$$

 R_i

 $f(\mathbf{x}) = \sum_{i=1}^{d} \frac{\partial f}{\partial x_i} \cdot x_i$

gradient x input

Let's consider a different approach ...

Overcoming NonLinearity

View the decision as a **graph computation** instead of a function evaluation, and propagate the decision backwards until the input is reached.

Layer-Wise Relevance Propagation (LRP) [Bach'15]

Gradient-Based vs. LRP

 $grad \times input$

LRP- $\alpha_1\beta_0$

Layer-Wise Relevance Propagation (LRP) [Bach'15]

LRP Propagation Rules: Two Views

Implementing Propagation Rules (1)

Element-wise operations	Vector operations
$z_k \rightarrow \sum_j a_j w_{jk}^+$	$z ightarrow W_+^ op \cdot oldsymbol{a}$
$s_k \rightarrow R_k/z_k$	$m{s} ightarrow m{R} \oslash m{z}$
$c_j ightarrow \sum_k w_{jk}^+ s_k$	$oldsymbol{c} o W_+ \cdot oldsymbol{s}$
$R_j ightarrow a_j c_j$	$m{R} ightarrow m{a} \odot m{c}$

22/36

Implementing Propagation Rules (2)

See also http://www.heatmapping.org/tutorial

How Fast is LRP ?

GPU-based implementation of LRP: Check out iNNvestigate [Alber'18] https://github.com/albermax/innvestigate Is there an underlying mathematical framework for LRP?

Deep Taylor Decomposition [Montavon'17]

Question: Suppose that we have propagated the relevance until a given layer. How should it be propagated one layer further?

Idea: By performing a <u>Taylor expansion</u> of the relevance.

The Structure of Relevance

Observation: Relevance at each layer is a product of the activation and an approximately locally constant term.

Deep Taylor Decomposition

Choosing the Root Point

$$R_{i\leftarrow j} = \frac{(a_i - \widetilde{a_i}^{(j)})w_{ij}}{\sum_i (a_i - \widetilde{a_i}^{(j)})w_{ij}}R_j$$

(Deep Taylor generic)

Choice of root point
$$\widehat{a}^{(j)} \in \mathcal{D}$$
1. nearest root $\widetilde{a}^{(j)} = a - t \cdot w_j$ 2. rescaled excitations $\widetilde{a}^{(j)} = a - t \cdot a \odot \mathbf{1}_{w_j \succ 0}$

(same as LRP- $\alpha_1\beta_0$)

$$R_{i\leftarrow j} = \frac{a_i w_{ij}^+}{\sum_i a_i w_{ij}^+} R_j$$

Choosing the Root Point

$$R_{i\leftarrow j} = \frac{(x_i - \widetilde{x_i}^{(j)})w_{ij}}{\sum_i (x_i - \widetilde{x_i}^{(j)})w_{ij}}R_j$$

(Deep Taylor generic)

Pixels domain:

Choice of root point $\widetilde{\mathbf{x}}^{(j)} = \mathbf{x} - t \cdot (\mathbf{x} - \mathbf{I} \odot \mathbf{1}_{\mathbf{w}_j \succ 0} - \mathbf{h} \odot \mathbf{1}_{\mathbf{w}_j \prec 0})$

Resulting propagation rule

$$R_{i \leftarrow j} = \frac{x_{ij} w_{ij} - l_i w_{ij}^+ - h_i w_{ij}^-}{\sum_i x_{ij} w_{ij} - l_i w_{ij}^+ - h_i w_{ij}^-} R_j$$

30/36

Choosing the Root Point

$$R_{i \leftarrow j} = \frac{(x_i - \widetilde{x_i}^{(j)}) w_{ij}}{\sum_i (x_i - \widetilde{x_i}^{(j)}) w_{ij}} R_j$$

(Deep Taylor generic)

Word embedding:

Choice of root point

$$\widetilde{\boldsymbol{x}}^{(j)} = \boldsymbol{x} - t \cdot \boldsymbol{w}_j$$

Resulting propagation rule

$$R_{i\leftarrow j} = \frac{w_{ij}^2}{\sum_i w_{ij}^2} R_j$$

DTD View on Explaining a ConvNet [Montavon'17]

backward pass

DTD View on Explaining an OCSVM [Kauffmann'18]

One-class SVM rewritten as a min-pooling over distances:

$$R_{i} = \sum_{j} \frac{(x_{i} - u_{ij})^{2}}{\|\mathbf{x} - \mathbf{u}_{j}\|_{2}^{2}} (R_{j} - D_{j}^{+}) \qquad \qquad R_{j} = (a_{j} + \varepsilon_{j}) \cdot \frac{\exp(-a_{j})}{\sum_{j} \exp(-a_{j})}$$
33/36

DTD-OCSVM on MNIST

DTD-OCSVM on Images

explanation for outlierness

Conclusion for Part 2

Explaining deep neural networks is non-trivial. Simple gradient-based methods either do not ask the right question, or are difficult to scale to deep models.

Propagation-based approaches (e.g. LRP) seem to work better on complex DNN models. (This will be validated in Part 3).

Deep Taylor Decomposition provides a theoretical framework for understanding and deriving LRP-type explanation procedures.