Tutorials

Interpretable Deep Learning: Towards Understanding \& Explaining DNNs

Part 2: Methods of Explanation

Wojciech Samek, Grégoire Montavon, Klaus-Robert Müller

What Will be Covered in Part 2

interpreting
predicted classes

explaining individual decisions

Explaining Individual Decisions

Q: Where in the image the neural networks sees evidence for a car?

Examples of Methods that Explain Decisions

Explaining Individual Decisions

Q: In which proportion has each car contributed to the prediction?

Explaining by Decomposing

Goal: Determine the share of the output that should be attributed to each input variable.

Decomposition property: $\quad \sum_{i=1}^{d} R_{i}=f\left(x_{1}, \ldots, x_{d}\right)$

Explaining by Decomposing

Goal: Determine the share of the output that should be attributed to each input variable.

?

Decomposing a prediction is generally difficult.

Sensitivity Analysis

explanation for "car" (heatmap):

computes for each pixel:

$$
R_{i}=\left(\frac{\partial f}{\partial x_{i}}\right)^{2}
$$

Sensitivity Analysis

Question: If sensitivity analysis computes a decomposition of something: Then, what does it decompose?

$$
R_{i}=\left(\frac{\partial f}{\partial x_{i}}\right)^{2} \Longleftrightarrow \sum_{i=1}^{d} R_{i}=\|\nabla f(\boldsymbol{x})\|^{2}
$$

Sensitivity Analysis

Sensitivity analysis explains a variation of the function, not the function value itself.

explanation for "car"

variation = make something appear less/more a car.

$$
\sum_{i=1}^{d} R_{i}=\|\nabla f(x)\|^{2}
$$

The Taylor Expansion Approach

1. Take a linear model:

$$
f(\boldsymbol{x})=\sum_{i=1}^{d} w_{i} x_{i}+b
$$

2. First-order expansion at root point:

$$
f(\boldsymbol{x})=\left.\sum_{i=1}^{d} \frac{\partial f}{\partial x_{i}}\right|_{\widetilde{x}} \cdot\left(x_{i}-\widetilde{x}_{i}\right)
$$

3. Identifying linear terms:

$$
\begin{gathered}
R_{i}=w_{i} \cdot\left(x_{i}-\widetilde{x}_{i}\right) \\
\text { a decomposition }
\end{gathered}
$$

Observation: explanation depends on the root point.

The Taylor Expansion Approach

Obtained relevance scores

$$
R_{i}=w_{i} \cdot\left(x_{i}-\widetilde{x}_{i}\right)
$$

How to choose the root point ?

- Closeness to the actual data point
- Membership to the input domain (e.g. pixel space)
- Membership to the data manifold.

Non-Linear Models

Nonlinear model

$$
\begin{aligned}
& f(\boldsymbol{x})=\sum_{j} \rho\left(\sum_{i=1}^{d} w_{i j} x_{i}+b_{j}\right) \\
& f(\boldsymbol{x})=\left.\sum_{i=1}^{d} \frac{\partial f}{\partial x_{i}}\right|_{\widetilde{x}} \cdot\left(x_{i}-\widetilde{x}_{i}\right)+o\left(\boldsymbol{x} \boldsymbol{x}^{\top}\right)
\end{aligned}
$$

second-order terms are hard to interpret and can be very large

Simple Taylor decomposition is not suitable for highly non-linear models.

Overcoming NonLinearity

Integrated Gradients [Sundararajan'17]:

$$
\begin{aligned}
& f(\boldsymbol{x})=\left.\int_{\boldsymbol{\xi}=\widetilde{x}}^{x} \sum_{i=1}^{d} \frac{\partial f}{\partial x_{i}}\right|_{\boldsymbol{\xi}} \cdot d \xi_{i} \\
& f(\boldsymbol{x})=\sum_{i=1}^{d} \underbrace{\left.\int_{\boldsymbol{\xi}=\widetilde{x}}^{x} \frac{\partial f}{\partial x_{i}}\right|_{\boldsymbol{\xi}} \cdot d \xi_{i}}_{R_{i}}
\end{aligned}
$$

- Fully decomposable
- Require computing an integral (expensive)
-Which integration path?

Overcoming NonLinearity

Special case when the origin is a root point and the gradient along the integration path is constant:

$$
\begin{aligned}
& f(x)=\sum_{i=1}^{d} \int_{\xi=0}^{x} \frac{\partial f}{\partial x_{i}} \cdot d \xi_{i} \\
& f(x)=\sum_{i=1}^{d} \underbrace{\frac{\partial f}{\partial x_{i}} \cdot x_{i}}_{R_{i}}
\end{aligned}
$$

gradient x input

Let's consider a different approach ...

Overcoming NonLinearity

View the decision as a graph computation instead of a function evaluation, and propagate the decision backwards until the input is reached.

Layer-Wise Relevance Propagation (LRP) [Bach'15]

Gradient-Based vs. LRP

grad \times input

Layer-Wise Relevance Propagation (LRP) [Bach'5]

Carefully engineered propagation rule:
e.g. LRP $-\alpha_{1} \beta_{0}$

neuron contribution

$$
\begin{array}{cc}
\text { pooling } \\
\text { received messages } & \text { normalization } \\
\text { term }
\end{array}
$$

LRP Propagation Rules: Two Views

View 1:

neuron
contribution

$$
R_{j}=\sum_{k}^{\text {pooling }} \sum_{k}^{\sum_{j}} \frac{a_{j} W_{j k}^{+}}{\sum_{j} W_{j k}^{+}} R_{k} \quad \begin{gathered}
\text { available for } \\
\text { redistribution }
\end{gathered}
$$

View 2 :
available for
neuron redistribution

$$
R_{j}=a_{j}^{\text {activation }} \sum_{k} w_{j k}^{+} \frac{R_{k}}{\sum_{j} a_{j} w_{j k}^{+}}
$$

Implementing Propagation Rules (1)

Element-wise operations

$z_{k} \rightarrow \sum_{j} a_{j} w_{j k}^{+}$	$z \rightarrow W_{+}^{\top} \cdot \boldsymbol{a}$
$s_{k} \rightarrow R_{k} / z_{k}$	$s \rightarrow \boldsymbol{R} \oslash \boldsymbol{z}$
$c_{j} \rightarrow \sum_{k} w_{j k}^{+} s_{k}$	$\boldsymbol{c} \rightarrow W_{+} \cdot \boldsymbol{s}$
$R_{j} \rightarrow a_{j} c_{j}$	$\boldsymbol{R} \rightarrow \boldsymbol{a} \odot \boldsymbol{c}$

Vector operations

$$
\begin{aligned}
z & \rightarrow W_{+}^{\top} \cdot a \\
s & \rightarrow R \oslash z \\
c & \rightarrow W_{+} \cdot s \\
R & \rightarrow a \odot c
\end{aligned}
$$

Implementing Propagation Rules (2)

Code that reuses forward and gradient computations:

```
def lrp(layer,a,R):
```

```
clone = layer.clone()
```

clone = layer.clone()
clone.W = maximum(0,layer.W)
clone.W = maximum(0,layer.W)
clone.B = 0
clone.B = 0
z = clone.forward(a)
z = clone.forward(a)
s = R / z
s = R / z
c = clone.backward(s)
c = clone.backward(s)
return a * c

```
return a * c
```

neuron
activation

weighted sum
available for redistribution

normalization term

How Fast is LRP?

GPU-based implementation of LRP: Check out iNNvestigate [Alber'18] https://github.com/albermax/innvestigate

Is there an underlying mathematical framework for LRP?

Deep Taylor Decomposition [Montavon'17]

Question: Suppose that we have propagated the relevance until a given layer. How should it be propagated one layer further?

Idea: By performing a Taylor expansion of the relevance.

The Structure of Relevance

Reminder:

Observation: Relevance at each layer is a product of the activation and an approximately locally constant term.

Deep Taylor Decomposition

Relevance neuron:

$$
R_{j}(\boldsymbol{a})=\max \left(0, \sum_{i} a_{i} w_{i j}+b_{j}\right) \cdot c_{j}
$$

Taylor expansion:

$$
R_{j}(\boldsymbol{a})=\left.\sum_{i} \frac{\partial R_{j}}{\partial a_{i}}\right|_{\widetilde{a}^{(j)}} \cdot\left(a_{i}-\widetilde{a}_{i}^{(j)}\right)
$$

Redistribution:

$$
R_{i \leftarrow j}=\frac{\left(a_{i}-\widetilde{a}_{i}^{(j)}\right) w_{i j}}{\sum_{i}\left(a_{i}-\widetilde{a}_{i}^{(j)}\right) w_{i j}} R_{j}
$$

$$
\underset{R_{i \leftarrow j}}{\leftarrow}
$$

Choosing the Root Point

$$
R_{i \leftarrow j}=\frac{\left(a_{i}-\widetilde{a}_{i}^{(j)}\right) w_{i j}}{\sum_{i}\left(a_{i}-\widetilde{a}_{i}^{(j)}\right) w_{i j}} R_{j}
$$

(Deep Taylor generic)

Choice of root point

	$\widetilde{\mathbf{a}}^{(j)} \in \mathcal{D}$
$\widetilde{\mathbf{a}}^{(j)}=a-t \cdot w_{j}$	
$\widetilde{\mathbf{a}}^{(j)}=a-t \cdot a \odot \mathbf{1}_{w_{j} \succ 0}$	\checkmark

(same as LRP- $\alpha_{1} \beta_{0}$)

$$
R_{i \leftarrow j}=\frac{a_{i} w_{i j}^{+}}{\sum_{i} a_{i} w_{i j}^{+}} R_{j}
$$

Choosing the Root Point

$$
R_{i \leftarrow j}=\frac{\left(x_{i}-\widetilde{x}_{i}^{(j)}\right) w_{i j}}{\sum_{i}\left(x_{i}-\widetilde{x}_{i}^{(j)}\right) w_{i j}} R_{j}
$$

(Deep Taylor generic)

Pixels domain:

Choice of root point

$$
\widetilde{\boldsymbol{x}}^{(j)}=x-t \cdot\left(\boldsymbol{x}-\boldsymbol{I} \odot 1_{w_{j} \succ 0}-\boldsymbol{h} \odot 1_{w_{j} \prec 0}\right)
$$

Resulting propagation rule

$$
R_{i \leftarrow j}=\frac{x_{i j} w_{i j}-l_{i} w_{i j}^{+}-h_{i} w_{i j}^{-}}{\sum_{i} x_{i j} w_{i j}-l_{i} w_{i j}^{+}-h_{i} w_{i j}^{-}} R_{j}
$$

Choosing the Root Point

$$
R_{i \leftarrow j}=\frac{\left(x_{i}-\widetilde{x}_{i}^{(j)}\right) w_{i j}}{\sum_{i}\left(x_{i}-\widetilde{x}_{i}^{(j)}\right) w_{i j}} R_{j}
$$

(Deep Taylor generic)

Word embedding:

Choice of root point

$$
\tilde{x}^{(j)}=x-t \cdot w_{j}
$$

Resulting propagation rule

$$
R_{i \leftarrow j}=\frac{w_{i j}^{2}}{\sum_{i} w_{i j}^{2}} R_{j}
$$

DTD View on Explaining a ConvNet [Montavon'17]

DTD View on Explaining an OCSVM [Kauffmann'18]

One-class SVM rewritten as a min-pooling over distances:

$$
R_{i}=\sum_{j} \frac{\left(x_{i}-u_{i j}\right)^{2}}{\left\|\boldsymbol{x}-\boldsymbol{u}_{j}\right\|_{2}^{2}}\left(R_{j}-D_{j}^{+}\right) \quad R_{j}=\left(a_{j}+\varepsilon_{j}\right) \cdot \frac{\exp \left(-a_{j}\right)}{\sum_{j} \exp \left(-a_{j}\right)}
$$

DTD-OCSVM on MNIST

DTD-OCSVM on Images

explanation for outlierness
$\square \longleftarrow$ patch size

Conclusion for Part 2

Explaining deep neural networks is non-trivial. Simple gradient-based methods either do not ask the right question, or are difficult to scale to deep models.

Propagation-based approaches (e.g. LRP) seem to work better on complex DNN models. (This will be validated in Part 3).

Deep Taylor Decomposition provides a theoretical framework for understanding and deriving LRP-type explanation procedures.

