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Interpretable Deep Learning: Towards 
Understanding & Explaining DNNs

Part 2: Methods of Explanation

Wojciech Samek, Grégoire Montavon, Klaus-Robert Müller

Tutorials
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interpreting
predicted classes

explaining
individual decisions

What Will be Covered in Part 2
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Q: Where in the image the neural networks sees evidence 
for a car?

Explaining Individual Decisions

car

non-car
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Examples of Methods that Explain Decisions
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Explaining Individual Decisions

Q:  In which proportion has each car contributed to the 
prediction?

car

non-car
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Explaining by Decomposing

Goal: Determine the share of the output that should be 
attributed to each input variable.

Decomposition property:

input

DNN
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Explaining by Decomposing

Goal: Determine the share of the output that should be 
attributed to each input variable.

Decomposing a prediction is generally difficult.
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Sensitivity Analysis

computes for each pixel:

explanation for “car”
(heatmap):

evidence
for “car”

DNN

input
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Sensitivity Analysis

Question: If sensitivity analysis 
computes a decomposition of 
something: Then, what does it 
decompose?
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Sensitivity Analysis

Sensitivity analysis explains a variation of the 
function, not the function value itself.

explanation for “car”input

variation = make 
something appear 
less/more a car.
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The Taylor Expansion Approach

2. First-order expansion at root point:

Observation: explanation depends on the root point.

1. Take a linear model:

3. Identifying
linear terms:

a decomposition

root point
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The Taylor Expansion Approach

Obtained relevance scores

How to choose the root point ?

- Closeness to the actual data point

- Membership to the input domain (e.g. pixel space)

- Membership to the data manifold.

root point
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Non-Linear Models

second-order terms are hard to 
interpret and can be very large

Simple Taylor decomposition is not 
suitable for highly non-linear models.

Nonlinear model
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Overcoming NonLinearity

Integrated Gradients [Sundararajan’17]:

• Fully decomposable
 

• Require computing an 
integral (expensive)
 

• Which integration path?

[Sundararajan’17] Axiomatic Attribution for Deep Networks. ICML 2017: 3319-3328
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Overcoming NonLinearity

Special case when the origin is a root 
point and the gradient along the 
integration path is constant:

gradient x input
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Let’s consider a
different approach ...
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Overcoming NonLinearity

View the decision as a graph computation instead of a function 
evaluation, and propagate the decision backwards until the input is 
reached.
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Layer-Wise Relevance Propagation (LRP) [Bach’15]
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Gradient-Based vs. LRP
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Layer-Wise Relevance Propagation (LRP) [Bach’15]

Carefully engineered 
propagation rule:

neuron
contribution

available for
redistribution

normalization
term

pooling
received messages
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LRP Propagation Rules: Two Views
neuron

contribution

available for
redistribution

normalization
term

pooling
received messages

neuron
activation

available for
redistribution

normalization
term

weighted sum

View 1:

View 2:
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Implementing Propagation Rules (1)

neuron
activation

available for
redistribution

normalization
term

weighted sum

Element-wise operations Vector operations
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Implementing Propagation Rules (2)

Code that reuses forward
and gradient computations:

neuron
activation

available for
redistribution

normalization
term

weighted sum

See also  http://www.heatmapping.org/tutorial

http://www.heatmapping.org/tutorial
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How Fast is LRP ?

GPU-based implementation of LRP: Check out iNNvestigate [Alber’18]
https://github.com/albermax/innvestigate

https://github.com/albermax/innvestigate
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Is there an
underlying mathe-
matical framework

for LRP?



  26/36

Question: Suppose that we have propagated the relevance until 
a given layer. How should it be propagated one layer further?

Idea: By performing a Taylor expansion of the relevance.

Deep Taylor Decomposition [Montavon’17]



  27/36

The Structure of Relevance

Observation: Relevance at each layer is a product of the 
activation and an approximately locally constant term.

neuron
activation

available for
redistribution

normalization
term

weighted sum

Reminder:
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Deep Taylor Decomposition

Relevance neuron:

Taylor expansion:

Redistribution:
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Choosing the Root Point

(same as LRP-α1β0)

(Deep Taylor generic)

✔

1. nearest root

2. rescaled excitations

Choice of root point
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Choosing the Root Point

(Deep Taylor generic)

Pixels domain:

Choice of root point

Resulting propagation rule
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Choosing the Root Point

(Deep Taylor generic)

Word
embedding:

adapted from
Tensorflow tutorial

Choice of root point

Resulting propagation rule

king

man

queen

woman
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DTD View on Explaining a ConvNet [Montavon’17]
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DTD View on Explaining an OCSVM  [Kauffmann’18]

Outlier score

One-class SVM rewritten as a min-pooling over distances:

Deep Taylor
decomposition:
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DTD-OCSVM on MNIST

outlier
digits

pixel-wise
explanation

why they
are outliersdataset
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input explanation for outlierness

DTD-OCSVM on Images
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Conclusion for Part 2

Explaining deep neural networks is non­trivial. Simple 
gradient­based methods either do not ask the right 
question, or are difficult to scale to deep models.

Propagation­based approaches (e.g. LRP) seem to work 
better on complex DNN models. (This will be validated in 
Part 3).

Deep Taylor Decomposition provides a theoretical 
framework for understanding and deriving LRP­type 
explanation procedures. 
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