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Overview of Explanation Methods

Question: Which one to choose ?
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First Attempt: Distance to Ground Truth
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DNN

From Ground Truth Explanations to Axioms

Idea: Evaluate the explanation technique axiomatically, i.e. it 
must pass a number of predefined “unit tests”.
[Sun’11, Bach’15, Montavon’17, Samek’17,
Sundarajan’17, Kindermans’17, Montavon’18].

explanation technique
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Properties 1-2: Conservation and Positivity
 

[Montavon’17, see also Sun’11, Landecker’13, Bach’15]

Conservation: Total attribution on the input 
features should be proportional to the amount 
of (explainable) evidence at the output.

Positivity: If the neural network is certain 
about its prediction, input features are either 
relevant (positive) or irrelevant (zero).

DNN

explanation
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Property 3: Continuity [Montavon’18]

If two inputs are the almost the same, and the prediction is also 
almost the same, then the explanation should also be almost the 
same.

Method 1 Method 2
Example:
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Testing Continuity

Sensitivity analysis
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input explanation
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Property 4: Selectivity [Bach’15, Samek’17]

Model must agree with the explanation: If input features are 
attributed relevance, removing them should reduce evidence at 
the output.

Method 1 Method 2
Example:
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Testing Selectivity with Pixel-Flipping
 

[Bach’15, Samek’17]

LRP-�1⇤0
Sensitivity analysis

f(x)

inputexplanation
scores

f(x)
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Question: Can we deduce some properties without 
experiments, directly from the equations?
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Reminder

Backprop internals (for propagating gradient)

LRP-�1⇤0 internals (for propagating relevance)
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Example: Deducing Conservation

Summing gives the property

LRP-�1⇤0 propagation rule vs. grad D input

When bias is negative, grad D input 
will tend to inflate scores.

D input
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Example: Deducing Continuity

vs. grad D inputLRP-�1⇤0 propagation rule

(when bias negative, continuity 
due to denominator upper-
bounding numerator.)
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Intermediate Conclusion

Ground-truth explanations are elusive. In practice, 
we are reduced to visual assessment or to test the 
explanation for a number of axioms.

Some properties can be deduced from the 
structure of the explanation method. Other can be 
tested empirically.

LRP-α1β0 satisfies key properties of an explanation. 
Sensitivity analysis and gradient D input have 
crucial limitations.
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From LRP to Deep Taylor Decomposition

The LRP-�1⇤0 rule

can be seen as
a deep Taylor 

decomposition (DTD)

which then yields
domain- and layer-
specific rules

[Montavon’17]
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DTD: The Structure of Relevance

Proposition: Relevance at each layer is a 
product of the activation and an approximately 
constant term.
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DTD: The Relevance as a Neuron
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DTD: Taylor Expansion of the Relevance
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DTD: Decomposing the Relevance

Taylor expansion at root point:

Relevance can now be
backward propagated
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DTD: Choosing the Root Point

✔

✔

✔ ✔

1. nearest root

2. rescaled activation

3. rescaled excitations

Choice of root point

(LRP-�1⇤0)

(Deep Taylor generic)
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DTD: Verifying the Product Structure

2. apply LRP-�1⇤0 rule

1. assume it holds
in higher-layer

3. observe it also holds in 
lower-layer

But was it true?
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From LRP to Deep Taylor Decomposition

The LRP-�1⇤0 rule

can be seen as
a deep Taylor 

decomposition (DTD)

which then yields
domain- and layer-
specific rules

[Montavon’17]
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DTD: Application to Input Layers

1. Choose a root point that is nearby and satisfies domain constraints

2. Inject it in the generic DTD rule to get the specific rule

Pixels: Embeddings:

image source:
Tensorflow tutorial
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DTD: Application to Pooling Layers

A sum-pooling layer over positive activations is equivalent to a ReLU 
layer with weights 1.

A p-norm pooling layer can be approximated as a sum-pooling layer 
multiplied by a ratio of norms that we treat as constant [Montavon’17].

 → Treat pooling layers as ReLU detection layers
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Basic Recommendation for CNNs
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* For top-layers, other rules may improve selectivity

forward pass

backward pass
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DTD for Kernel Models  [Kauffmann’18]

1. Build a neural network equivalent of the One-Class SVM:

Gaussian/Laplace Kernel

Student Kernel

2. Computes its deep Taylor
decomposition

Outlier score
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Implementing the LRP-�1⇤0 rule
Sequence of element-wise 
computations

Sequence of vector 
computations

Propagation rule to implement:
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Implementing the LRP-�1⇤0 rule
Propagation rule to implement:

Code that reuses forward and gradient computations:
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How LRP Scales

No need for much computing power. GoogleNet explanation for 
single image can be done on the CPU.
Linear time scaling allows to use LRP for real-time processing, or as 
part of training.
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Conclusion

Ground-truth explanations are elusive. In practice, we are 
reduced to visual assessment or to test the explanation for a 
number of axioms.

Some properties can be deduced from the structure of the 
explanation method. Other can be tested empirically.

LRP-α1β0 satisfies key properties of an explanation. Sensitivity 
analysis and gradient D input have crucial limitations.

This suitable LRP-α1β0 propagation rule can be seen as 
performing a deep Taylor decomposition for deep ReLU nets.

The deep Taylor decomposition allows to consistently extend 
the framework to new models and new types of data.
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