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Making Deep Neural Nets Transparent

DNN transparency

interpreting models

- Berkes 2006
- Erhan 2010
- Simonyan 2013
- Nguyen 2015/16

activation
maximization

data
generation

- Hinton 2006
- Goodfellow 2014
- v. den Oord 2016
- Nguyen 2016

focus on model focus on data

explaining decisions

sensitivity
analysis

- Khan 2001
- Gevrey 2003
- Baehrens 2010
- Simonyan 2013

decomposition

- Poulin 2006
- Landecker 2013
- Bach 2015
- Montavon 2017
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Making Deep Neural Nets Transparent

model analysis decision analysis

- visualizing filters
- max. class activation

- include distribution
   (RBM, DGN, etc.)

- sensitivity analysis
- decomposition
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Interpreting Classes and Outputs

Image classi�cation:

GoogleNet
"motorbike"

Question: How does a “motorbike” typically look like?

Quantum chemical calculations:

GDB-7
high

Question: How to interpret “α high” in terms of molecular geometry?
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The Activation Maximization (AM) Method

Let us interpret a concept predicted by a deep neural net (e.g.
a class, or a real-valued quantity):

Examples:
I Creating a class prototype: maxx∈X log p(ωc|x).
I Synthesizing an extreme case: maxx∈X f (x).
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Interpreting a Handwritten Digits Classi�er
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→ → optimizing maxx p(ωc|x) → →
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Interpreting a DNN Image Classi�er
goose ostrich

Images from Simonyan et al. 2013 “Deep Inside Convolutional Networks:
Visualising Image Classi�cation Models and Saliency Maps”

Observations:
I AM builds typical patterns for these classes (e.g. beaks, legs).
I Unrelated background objects are not present in the image.
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Improving Activation Maximization

Activation-maximization produces class-related patterns, but they
are not resembling true data points. This can lower the quality of
the interpretation for the predicted class ωc .

Idea:
I Force the interpretation x? to match the data more closely.

This can be achieved by rede�ning the optimization problem:

Find the input pattern that
maximizes class probability. →

Find the most likely input
pattern for a given class.
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Improving Activation Maximization

Find the input pattern that
maximizes class probability. → Find the most likely input

pattern for a given class.

x0

x*
x0

x*
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Improving Activation Maximization

Find the input pattern that
maximizes class probability. → Find the most likely input

pattern for a given class.

Nguyen et al. 2016 introduced several enhancements for activation
maximization:

I Multiplying the objective by an expert p(x):

p(x|ωc) ∝ p(ωc|x)︸ ︷︷ ︸
old

·p(x)

I Optimization in code space:

max
z∈Z

p(ωc| g(z)︸︷︷︸
x

) + λ‖z‖2 x? = g(z?)

These two techniques require an unsupervised model of the data,
either a density model p(x) or a generator g(z).

ICASSP 2017 Tutorial — G. Montavon, W. Samek, K.-R. Müller 10/44



784

10

discriminative model

log p(ωc|x)

neural
network

0 1 2 3 4 5 6 7 8 9interpre-
tation
for ωc

+

900 1

density model

p(x)log

log p(x|ωc)
+ const.

- optimum has
   clear meaning
- objective can be
   hard to optimize

AM + density

784

10

900

discriminative model

generative model

x=g(z)
log p(ωc|x)

neural
network

0 1 2 3 4 5 6 7 8 9

100

z

- more straightforward
  to optimize
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AM + generator

x
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Comparison of Activation Maximization Variants

simple AM
(initialized
to mean)

simple AM
(init. to
class

means)

AM-density
(init. to
class

means)

AM-gen
(init. to
class

means)

Observation: Connecting to the data leads to sharper prototypes.
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Enhanced AM on Natural Images

Images from Nguyen et al. 2016. “Synthesizing the preferred inputs for
neurons in neural networks via deep generator networks”

Observation: Connecting AM to the data distribution leads to more
realistic and more interpretable images.

ICASSP 2017 Tutorial — G. Montavon, W. Samek, K.-R. Müller 13/44



Summary

I Deep neural networks can be interpreted by �nding input
patterns that maximize a certain output quantity (e.g. class
probability).

I Connecting to the data (e.g. by adding a generative or density
model) improves the interpretability of the solution.

x0

x*
x0

x*
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Limitations of Global Interpretations

Question: Below are some images of motorbikes. What would be
the best prototype to interpret the class “motorbike”?

Observations:
I Summarizing a concept or category like “motorbike” into a

single image can be di�cult (e.g. di�erent views or colors).
I A good interpretation would grow as large as the diversity of

the concept to interpret.

ICASSP 2017 Tutorial — G. Montavon, W. Samek, K.-R. Müller 15/44



From Prototypes to Individual Explanations

Finding a prototype:

GoogleNet
"motorbike"

Question: How does a “motorbike” typically look like?

Individual explanation:

GoogleNet
"motorbike"

Question: Why is this example classi�ed as a motorbike?
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From Prototypes to Individual Explanations

Finding a prototype:

GDB-7
high

Question: How to interpret “α high” in terms of molecular geometry?

Individual explanation:

GDB-7
= ...

Question: Why α has a certain value for this molecule?
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From Prototypes to Individual Explanations

Other examples where individual explanations are preferable to global
interpretations:

I Brain-computer interfaces: Analyze input data for a given
user at a given time in a given environment.

I Personalized medicine: Extracting the relevant information
about a medical condition for a given patient at a given time.

Each case is unique and
needs its own explanation.
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From Prototypes to Individual Explanations

model analysis decision analysis

- visualizing filters
- max. class activation

- include distribution
   (RBM, DGN, etc.)

- sensitivity analysis
- decomposition
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Explaining Decisions

Goal: Determine the relevance of each input variable for a given
decision f (x1, x2, . . . , xd), by assigning to these variables relevance
scores R1, R2, . . . , Rd .

R1 R2

R1 R2

x1

x2

f(x')

f(x)
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Basic Technique: Sensitivity Analysis

Consider a function f , a data point x = (x1, . . . , xd), and the
prediction

f (x1, . . . , xd).

Sensitivity analysis measures the local variation of the function
along each input dimension

Ri =
( ∂f
∂xi

∣∣∣
x=x

)2

Remarks:
I Easy to implement (we only need access to the gradient

of the decision function).
I But does it really explain the prediction?
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Explaining by Decomposing

R1

R2

R3
R4

 f(x) =
aggregate
quantity

decomposition

∑
i Ri = f (x)

Examples:

I Economic activity (e.g. petroleum, cars, medicaments, ...)
I Energy production (e.g. coal, nuclear, hydraulic, ...)

I Evidence for object in an image (e.g. pixel 1, pixel 2, pixel 3, ...)
I Evidence for meaning in a text (e.g. word 1, word 2, word 3, ...)
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What Does Sensitivity Analysis Decompose?

Sensitivity analysis

Ri =
( ∂f
∂xi

∣∣∣
x=x

)2

is a decomposition of the gradient norm ‖∇xf‖2.

Proof:
∑

i Ri = ‖∇xf‖2

Sensitivity analysis explains
a variation of the function,
not the function value itself.
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What Does Sensitivity Analysis Decompose?

Example: Sensitivity for class “car”

input image sensitivity

I Relevant pixels are found both on cars and on the background.
I Explains what reduces/increases the evidence for cars rather

what is the evidence for cars.
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Decomposing the Correct Quantity

slope decomposition value decomposition∑
i Ri = ‖∇xf‖2 →

∑
i Ri = f (x)

Candidate: Taylor decomposition

f (x) = f (x̃)︸︷︷︸
0

+
d∑

i=1

∂f
∂xi

∣∣∣
x=x̃

(xi − x̃i)︸ ︷︷ ︸
Ri

+O(xx>)︸ ︷︷ ︸
0

I Achievable for linear models and
deep ReLU networks without
biases, by choosing:

x̃ = lim
ε→0

ε · x ≈ 0.
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Experiment on a Randomly Initialized DNN

500

500

500

500

x1

x2

f(x)

f(x)

x1
x2
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Decomposing the Output of the DNN

Ri =
∂f
∂xi

∣∣
x=x̃ · (xi − x̃i)

⇒ “Naive” Taylor decomposition
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Decomposing the Output of the DNN

Ri =
∂f
∂xi

∣∣
x=x̃ · (xi − x̃i) ⇒ “Naive” Taylor decomposition
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Decomposing the Output of the DNN

500

500

500

500

x1

x2

f(x)

"naive" Taylor
decom

position

Advantages
I Decomposes the desired

quantity f (x) in a
principled way.

Disadvantages
I Relevance functions are

highly non-smooth.
I Relevance scores are

sometimes negative.
I In�exible w.r.t. the model.
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Experiment on Handwritten Digits

Data to classify:

3-layer MLP:
Sensitivity analysis

Naive Taylor (x̃ = 0)

6-layer CNN:
Sensitivity analysis

Naive Taylor (x̃ = 0)

Observation: Both analyses produce noisy explanations of the MLP
and CNN predictions.
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Experiment on BVLC Ca�eNet

Input images Sensitivity analysis

Observation: Explanations are noisy and (over/under)represent cer-
tain regions of the image.
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Explaining DNN Predictions

I Standard methods (sensitivity analysis, naive Taylor
decomposition) are subject to gradient noise and do not
work well on deep neural networks.

DNN predictions need more
advanced explanation methods.
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From Shallow to Deep Explanations

Key Idea: If a decision is too complex to explain, break the de-
cision function into sub-functions, and explain each sub-decision
separately.

2. explain
subfunctions

rel
ev

an
ce

of 
x 2

relevance
of x1

3. aggregate
explanations

f(x)

x1

= +
1. decompose

decision function

x2
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From Shallow to Deep Taylor Decomposition

Taylor
decomposition
(TD)

deep Taylor
decomposition
(DTD)

TD TD TD
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Decomposing a Single Neuron

Equation of the ReLU neuron

h = max(0, x>w + b)

Pick an appropriate root point

x̃ ∈ {x : h ≈ 0 ∧ constraints}

Perform a Taylor expansion and iden-
tify �rst-order terms

h = ∇h
∣∣>
x̃ · (x − x̃) =

∑
i wi · (xi − x̃i)︸ ︷︷ ︸

Ri

Resulting decomposition for various x̃

Ri =
xiw+

i∑
i xiw+

i
h︸ ︷︷ ︸

hidden layers

, Ri =
xi+|wi |∑
i xi+|wi |

h︸ ︷︷ ︸
pixel layers
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Backpropagating Decompositions

Consider an arbitrary layer of a neural
network, at which the neural network
output f (x) can be decomposed as:

f (x) =
∑

jRj with Rj = hjcj ,

and cj > 0 locally constant. Then, f (x)
can also be decomposed in the previ-
ous layer:

f (x) =
∑

iRi with Ri = hici

and
ci =

∑
j

w+
ij hjcj∑
i hiw+

ij
> 0

also approximately locally constant.

ICASSP 2017 Tutorial — G. Montavon, W. Samek, K.-R. Müller 36/44



From Decomposition to Relevance Propagation

The relevance score

Ri = hi
∑

j

w+
ij hjcj∑
i hiw+

ij︸ ︷︷ ︸
ci

can also be written as

Ri =
∑

j

( hiw+
ij∑

i hiw+
ij

)
︸ ︷︷ ︸

qij

Rj ,

and can be interpreted as a �ow
of relevance propagating backwards,
where qij is the fraction of relevance
at unit j that �ows into unit i.
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Layer-Wise Relevance Propagation (LRP)
In practice, relevance propagation
does not need to result from a strict
deep Taylor decomposition.

Instead, any propagation function
qij = g(hi ,wij , . . .) with

∑
i qij = 1 can

be used.

The propagation function can be op-
timized for some measure of decom-
position quality.

It enables LRP’s application to various
machine learning models (e.g. Fisher-
BoW + SVMs, NNs with non-ReLU
units, etc.)
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Layer-Wise Relevance Propagation (LRP)

step 2: relevance propagation
also linear time!

step 1: forward pass
(linear time)

Propagation rule:

Ri =
∑

j

qijRj
∑

i

qij = 1

Various rules are available for pixel layers, intermediate layers, or
special layers.
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Comparing Explanation Methods

sensitivity analysis deep Taylor LRP

500

500

500

500

x1

x2

f(x)
x1

x2

10

1

Taylor decomposition

I Layer-wise relevance propagation denoises the explanation.
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Comparison on Handwritten Digits

Data to classify:

3-layer MLP:
Sensitivity analysis

Naive Taylor (x̃ = 0)

Deep Taylor LRP

6-layer CNN:
Sensitivity analysis

Naive Taylor (x̃ = 0)

Deep Taylor LRP
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Comparison on Cars Example

Image Sensitivity Analysis Deep Taylor LRP

Observation: Only deep Taylor LRP focuses on cars.
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Comparison on ImageNet Models

sensitivity analysis

deep Taylor LRP

LRP + engineered
propagation rules (α2β1)

deep Taylor LRP
+ better model

(GoogleNet)

image classified
as "frog" by

BVLC CaffeNet

Adapted from Montavon et al. 2017
“Explaining NonLinear Classi�cation
Decisions with Deep Taylor Decomposition”
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A Useful Trick to Implement Deep Taylor LRP

Propagation rule to implement:

∀i : Ri =
∑

j

hiw+
ij∑

i hiw+
ij

Rj

Trick: Reuse forward and backward passes from an existing imple-
mentation (e.g. Theano or TensorFlow)

clone = layer.clone()

clone.W = max(0, layer.W)
clone.B = 0

z(l+1) = clone.forward(h(l))

R(l) = h(l) � clone.grad(R(l+1) � z(l+1))

Can be used to easily implement deep Taylor LRP in convolution and
pooling layers.
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